Chromosomal Speciation in the Genomics Era: Disentangling Phylogenetic Evolution of Rock-wallabies

The association of chromosome rearrangements (CRs) with speciation is well established, and there is a long history of theory and evidence relating to “chromosomal speciation.” Genomic sequencing has the potential to provide new insights into how reorganization of genome structure promotes divergence, and in model systems has demonstrated reduced gene flow in rearranged segments. However, there are limits to what we can understand from a small number of model systems, which each only tell us about one episode of chromosomal speciation. Progressing from patterns of association between chromosome (and genic) change, to understanding processes of speciation requires both comparative studies across diverse systems and integration of genome-scale sequence comparisons with other lines of evidence. Here, we showcase a promising example of chromosomal speciation in a non-model organism, the endemic Australian marsupial genus Petrogale. We present initial phylogenetic results from exon-capture that resolve a history of divergence associated with extensive and repeated CRs. Yet it remains challenging to disentangle gene tree heterogeneity caused by recent divergence and gene flow in this and other such recent radiations. We outline a way forward for better integration of comparative genomic sequence data with evidence from molecular cytogenetics, and analyses of shifts in the recombination landscape and potential disruption of meiotic segregation and epigenetic programming. In all likelihood, CRs impact multiple cellular processes and these effects need to be considered together, along with effects of genic divergence. Understanding the effects of CRs together with genic divergence will require development of more integrative theory and inference methods. Together, new data and analysis tools will combine to shed light on long standing questions of how chromosome and genic divergence promote speciation.

[1]  M. Kirkpatrick,et al.  Chromosome Inversions, Local Adaptation and Speciation , 2017, Genetics.

[2]  T. J. Robinson,et al.  Chromosomal polymorphism in mammals: an evolutionary perspective , 2017, Biological reviews of the Cambridge Philosophical Society.

[3]  M. Kirkpatrick The Evolution of Genome Structure by Natural and Sexual Selection. , 2017, The Journal of heredity.

[4]  D. Larkin,et al.  Mammalian Comparative Genomics Reveals Genetic and Epigenetic Features Associated with Genome Reshuffling in Rodentia , 2016, Genome biology and evolution.

[5]  Alexander Suh The phylogenomic forest of bird trees contains a hard polytomy at the root of Neoaves , 2016 .

[6]  Scott V Edwards,et al.  Reticulation, divergence, and the phylogeography–phylogenetics continuum , 2016, Proceedings of the National Academy of Sciences.

[7]  Luay Nakhleh,et al.  Reticulate evolutionary history and extensive introgression in mosquito species revealed by phylogenetic network analysis , 2016, Molecular ecology.

[8]  L. Rieseberg,et al.  A genomic perspective on hybridization and speciation , 2016, Molecular ecology.

[9]  Claudia R. Solís-Lemus,et al.  Inconsistency of Species Tree Methods under Gene Flow. , 2016, Systematic biology.

[10]  H. Hauffe,et al.  Genetic differentiation within and away from the chromosomal rearrangements characterising hybridising chromosomal races of the western house mouse (Mus musculus domesticus) , 2016, Chromosome Research.

[11]  H. Kokko,et al.  The ecology and evolutionary dynamics of meiotic drive , 2018 .

[12]  J. Forejt,et al.  Hybrid Sterility Locus on Chromosome X Controls Meiotic Recombination Rate in Mouse , 2016, PLoS genetics.

[13]  Charles W. Linkem,et al.  Phylogenomics of a rapid radiation: is chromosomal evolution linked to increased diversification in north american spiny lizards (Genus Sceloporus)? , 2016, BMC Evolutionary Biology.

[14]  L. Rieseberg,et al.  Recombination Rate Evolution and the Origin of Species. , 2016, Trends in ecology & evolution.

[15]  James Mallet,et al.  How reticulated are species? , 2015, BioEssays : news and reviews in molecular, cellular and developmental biology.

[16]  Brendan L. O’Connell,et al.  Chromosome-scale shotgun assembly using an in vitro method for long-range linkage , 2015, Genome research.

[17]  R. Nielsen,et al.  Reticulate Speciation and Barriers to Introgression in the Anopheles gambiae Species Complex , 2015, Genome biology and evolution.

[18]  C. Moritz,et al.  Gene flow despite complex Robertsonian fusions among rock-wallaby (Petrogale) species , 2015, Biology Letters.

[19]  H. Ellegren,et al.  Resolving Evolutionary Relationships in Closely Related Species with Whole-Genome Sequencing Data , 2015, Systematic biology.

[20]  T. J. Robinson,et al.  An Integrative Breakage Model of genome architecture, reshuffling and evolution , 2015, BioEssays : news and reviews in molecular, cellular and developmental biology.

[21]  M. Kirkpatrick,et al.  Y Fuse? Sex Chromosome Fusions in Fishes and Reptiles , 2015, PLoS genetics.

[22]  M. Ritchie,et al.  Genome‐wide tests for introgression between cactophilic Drosophila implicate a role of inversions during speciation , 2015, Evolution; international journal of organic evolution.

[23]  T. Price,et al.  Rates of Karyotypic Evolution in Estrildid Finches Differ Between Island and Continental Clades , 2015, bioRxiv.

[24]  Xiaofang Jiang,et al.  Extensive introgression in a malaria vector species complex revealed by phylogenomics , 2015, Science.

[25]  Kevin J. Liu,et al.  Maximum likelihood inference of reticulate evolutionary histories , 2014, Proceedings of the National Academy of Sciences.

[26]  M. Lampson,et al.  Centromere Strength Provides the Cell Biological Basis for Meiotic Drive and Karyotype Evolution in Mice , 2014, Current Biology.

[27]  M. Kirkpatrick,et al.  LOCAL ADAPTATION AND THE EVOLUTION OF CHROMOSOME FUSIONS , 2014, Evolution; international journal of organic evolution.

[28]  P. Fraser,et al.  The impact of chromosomal rearrangements on regulation of gene expression. , 2014, Human molecular genetics.

[29]  August E. Woerner,et al.  Gibbon genome and the fast karyotype evolution of small apes , 2014 .

[30]  Simon H. Martin,et al.  Evaluating the Use of ABBA–BABA Statistics to Locate Introgressed Loci , 2014, bioRxiv.

[31]  J. Searle,et al.  The Robertsonian phenomenon in the house mouse: mutation, meiosis and speciation , 2014, Chromosoma.

[32]  J. Ventura,et al.  Genetic recombination variation in wild Robertsonian mice: on the role of chromosomal fusions and Prdm9 allelic background , 2014, Proceedings of the Royal Society B: Biological Sciences.

[33]  M. Farré,et al.  Unraveling the effect of genomic structural changes in the rhesus macaque - implications for the adaptive role of inversions , 2014, BMC Genomics.

[34]  Hong Ma,et al.  Detection of genomic variations and DNA polymorphisms and impact on analysis of meiotic recombination and genetic mapping , 2014, Proceedings of the National Academy of Sciences.

[35]  P. Martinez,et al.  Evidence for meiotic drive as an explanation for karyotype changes in fishes. , 2014, Marine genomics.

[36]  Marie Altmanová,et al.  Multiple sex chromosomes in the light of female meiotic drive in amniote vertebrates , 2014, Chromosome Research.

[37]  August E. Woerner,et al.  Strong selective sweeps associated with ampliconic regions in great ape X chromosomes , 2014, 1402.5790.

[38]  J. Váhala,et al.  Impact of Robertsonian translocation on meiosis and reproduction: an impala (Aepyceros melampus) model , 2014, Journal of Applied Genetics.

[39]  Matthew D. Rasmussen,et al.  Genome-Wide Inference of Ancestral Recombination Graphs , 2013, PLoS genetics.

[40]  R. Castiglia Sympatric sister species in rodents are more chromosomally differentiated than allopatric ones: implications for the role of chromosomal rearrangements in speciation , 2014 .

[41]  L. Nakhleh,et al.  Computational approaches to species phylogeny inference and gene tree reconciliation. , 2013, Trends in ecology & evolution.

[42]  Yun Yu,et al.  Fast algorithms and heuristics for phylogenomics under ILS and hybridization , 2013, BMC Bioinformatics.

[43]  J. Graves,et al.  Marsupials in the age of genomics. , 2013, Annual review of genomics and human genetics.

[44]  P. Andolfatto,et al.  PHYLOGENOMICS REVEALS EXTENSIVE RETICULATE EVOLUTION IN XIPHOPHORUS FISHES , 2013, Evolution; international journal of organic evolution.

[45]  Arcadi Navarro,et al.  Great ape genetic diversity and population history , 2013, Nature.

[46]  H. Hauffe,et al.  UNDERSTANDING THE BASIS OF DIMINISHED GENE FLOW BETWEEN HYBRIDIZING CHROMOSOME RACES OF THE HOUSE MOUSE , 2013, Evolution; international journal of organic evolution.

[47]  M. Kirkpatrick,et al.  A sequential coalescent algorithm for chromosomal inversions , 2013, Heredity.

[48]  M. Kirkpatrick,et al.  REPRODUCTIVE ISOLATION AND LOCAL ADAPTATION QUANTIFIED FOR A CHROMOSOME INVERSION IN A MALARIA MOSQUITO , 2013, Evolution; international journal of organic evolution.

[49]  M. Kirkpatrick,et al.  Cryptic recombination in the ever‐young sex chromosomes of Hylid frogs , 2012, Journal of evolutionary biology.

[50]  Kohta Yoshida,et al.  THE CONTRIBUTION OF FEMALE MEIOTIC DRIVE TO THE EVOLUTION OF NEO-SEX CHROMOSOMES , 2012, Evolution; international journal of organic evolution.

[51]  D. Taggart,et al.  Multiple biogeographical barriers identified across the monsoon tropics of northern Australia: phylogeographic analysis of the brachyotis group of rock‐wallabies , 2012, Molecular ecology.

[52]  T. J. Robinson,et al.  Different patterns of Robertsonian fusion pairing in Bovidae and the house mouse: the relationship between chromosome size and nuclear territories. , 2012, Genetics research.

[53]  G. Yannic,et al.  CHROMOSOMAL REARRANGEMENTS DO NOT SEEM TO AFFECT THE GENE FLOW IN HYBRID ZONES BETWEEN KARYOTYPIC RACES OF THE COMMON SHREW (SOREX ARANEUS) , 2012, Evolution; international journal of organic evolution.

[54]  O. Loudet,et al.  Rapid Establishment of Genetic Incompatibility through Natural Epigenetic Variation , 2012, Current Biology.

[55]  M. Kirkpatrick,et al.  Coalescent patterns for chromosomal inversions in divergent populations , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[56]  M. Noor,et al.  Genomic impacts of chromosomal inversions in parapatric Drosophila species , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[57]  D. Taggart,et al.  Phylogenetic relationships of rock-wallabies, Petrogale (Marsupialia: Macropodidae) and their biogeographic history within Australia. , 2012, Molecular phylogenetics and evolution.

[58]  in mammalian , 2012 .

[59]  C. Grey,et al.  Mouse PRDM9 DNA-Binding Specificity Determines Sites of Histone H3 Lysine 4 Trimethylation for Initiation of Meiotic Recombination , 2011, PLoS biology.

[60]  David Reich,et al.  Testing for ancient admixture between closely related populations. , 2011, Molecular biology and evolution.

[61]  T. White,et al.  Natural hybridization between extremely divergent chromosomal races of the common shrew (Sorex araneus, Soricidae, Soricomorpha): hybrid zone in Siberia , 2011, Journal of evolutionary biology.

[62]  Kevin Brick,et al.  Genome-wide analysis reveals novel molecular features of mouse recombination hotspots , 2011, Nature.

[63]  A. Villeneuve,et al.  An Asymmetric Chromosome Pair Undergoes Synaptic Adjustment and Crossover Redistribution During Caenorhabditis elegans Meiosis: Implications for Sex Chromosome Evolution , 2011, Genetics.

[64]  R. Butlin,et al.  Chromosomal Speciation Revisited: Modes of Diversification in Australian Morabine Grasshoppers (Vandiemenella, viatica Species Group) , 2011, Insects.

[65]  R. Plevin,et al.  Approximate Bayesian Computation in Evolution and Ecology , 2011 .

[66]  D. Presgraves Darwin and the Origin of Interspecific Genetic Incompatibilities , 2010, The American Naturalist.

[67]  Pavel M. Borodin,et al.  Synapsis and recombination in inversion heterozygotes. , 2010, Biochemical Society transactions.

[68]  M. Beaumont Approximate Bayesian Computation in Evolution and Ecology , 2010 .

[69]  Jody Hey,et al.  Divergence with Gene Flow: Models and Data , 2010 .

[70]  R. Faria,et al.  Chromosomal speciation revisited: rearranging theory with pieces of evidence. , 2010, Trends in ecology & evolution.

[71]  R. O’Neill,et al.  Chromosomes, conflict, and epigenetics: chromosomal speciation revisited. , 2010, Annual review of genomics and human genetics.

[72]  M. Kirkpatrick How and Why Chromosome Inversions Evolve , 2010, PLoS biology.

[73]  P. Franchini,et al.  REDUCED GENE FLOW AT PERICENTROMERIC LOCI IN A HYBRID ZONE INVOLVING CHROMOSOMAL RACES OF THE HOUSE MOUSE MUS MUSCULUS DOMESTICUS , 2010, Evolution; international journal of organic evolution.

[74]  Philip L. F. Johnson,et al.  A Draft Sequence of the Neandertal Genome , 2010, Science.

[75]  J. Turner,et al.  Meiotic sex chromosome inactivation , 2007, Current Biology.

[76]  M. Noor,et al.  Islands of speciation or mirages in the desert? Examining the role of restricted recombination in maintaining species , 2010, Heredity.

[77]  P. Nosil,et al.  Chromosomal Inversions and Species Differences: When are Genes Affecting Adaptive Divergence and Reproductive Isolation Expected to Reside within Inversions? , 2009, Evolution; international journal of organic evolution.

[78]  M. Batzer,et al.  The impact of retrotransposons on human genome evolution , 2009, Nature Reviews Genetics.

[79]  M. T. Parra,et al.  A High Incidence of Meiotic Silencing of Unsynapsed Chromatin Is Not Associated with Substantial Pachytene Loss in Heterozygous Male Mice Carrying Multiple Simple Robertsonian Translocations , 2009, PLoS genetics.

[80]  Marie-France Sagot,et al.  Analysis of fine-scale mammalian evolutionary breakpoints provides new insight into their relation to genome organisation , 2009 .

[81]  Rob J. Kulathinal,et al.  The Genomics of Speciation in Drosophila: Diversity, Divergence, and Introgression Estimated Using Low-Coverage Genome Sequencing , 2009, PLoS genetics.

[82]  Loretta Auvil,et al.  Breakpoint regions and homologous synteny blocks in chromosomes have different evolutionary histories. , 2009, Genome research.

[83]  G. Yannic,et al.  Chromosomal rearrangements and gene flow over time in an inter-specific hybrid zone of the Sorex araneus group , 2009, Heredity.

[84]  D. Charlesworth,et al.  The evolution of restricted recombination in sex chromosomes. , 2009, Trends in ecology & evolution.

[85]  D. Hillis,et al.  Speciation by monobrachial centric fusions: a test of the model using nuclear DNA sequences from the bat genus Rhogeessa. , 2009, Molecular phylogenetics and evolution.

[86]  Cestmir Vlcek,et al.  A Mouse Speciation Gene Encodes a Meiotic Histone H3 Methyltransferase , 2009, Science.

[87]  Beatrice Bateson,et al.  William Bateson, Naturalist: Heredity and Variation in Modern Lights , 2009 .

[88]  Loren H Rieseberg,et al.  Revisiting the Impact of Inversions in Evolution: From Population Genetic Markers to Drivers of Adaptive Shifts and Speciation? , 2008, Annual review of ecology, evolution, and systematics.

[89]  Luay Nakhleh,et al.  PhyloNet: a software package for analyzing and reconstructing reticulate evolutionary relationships , 2008, BMC Bioinformatics.

[90]  D. Presgraves,et al.  Sex chromosomes and speciation in Drosophila. , 2008, Trends in genetics : TIG.

[91]  H. Muller Types of visible variations induced by X-rays inDrosophila , 1930, Journal of Genetics.

[92]  J. Haldane,et al.  Sex ratio and unisexual sterility in hybrid animals , 1922, Journal of Genetics.

[93]  L. Gustafsson,et al.  Sex Chromosome-Linked Species Recognition and Evolution of Reproductive Isolation in Flycatchers , 2007, Science.

[94]  R. O’Neill,et al.  Species-specific shifts in centromere sequence composition are coincident with breakpoint reuse in karyotypically divergent lineages , 2007, Genome Biology.

[95]  W. Chȩtnicki,et al.  Preferential segregation of metacentric chromosomes in simple Robertsonian heterozygotes of Sorex araneus , 2007, Heredity.

[96]  M. Turelli,et al.  Asymmetric Postmating Isolation: Darwin's Corollary to Haldane's Rule , 2007, Genetics.

[97]  N. Pierce,et al.  KARYOTYPIC DIVERSITY AND SPECIATION IN AGRODIAETUS BUTTERFLIES , 2007, Evolution; international journal of organic evolution.

[98]  Ingo Schubert,et al.  Chromosome evolution. , 2007, Current opinion in plant biology.

[99]  Jose Castresana,et al.  Is mammalian chromosomal evolution driven by regions of genome fragility? , 2006, Genome Biology.

[100]  G. Yannic,et al.  RESTRICTED GENE FLOW AT SPECIFIC PARTS OF THE SHREW GENOME IN CHROMOSOMAL HYBRID ZONES , 2006, Evolution; international journal of organic evolution.

[101]  M. J. Neale,et al.  Clarifying the mechanics of DNA strand exchange in meiotic recombination , 2006, Nature.

[102]  D. Huson,et al.  Application of phylogenetic networks in evolutionary studies. , 2006, Molecular biology and evolution.

[103]  A. Goldizen,et al.  Significant patterns of population genetic structure and limited gene flow in a threatened macropodid marsupial despite continuous habitat in southeast Queensland, Australia , 2006, Conservation Genetics.

[104]  J. Plotkin,et al.  Reinforcement of pre-zygotic isolation and karyotype evolution in Agrodiaetus butterflies , 2005, Nature.

[105]  T. Axenovich,et al.  Genetic Control of Chromosome Synapsis in Mice Heterozygous for a Paracentric Inversion , 2005, Russian Journal of Genetics.

[106]  H. Winking,et al.  Synaptonemal complexes of chains and rings in mice heterozygous for multiple Robertsonian translocations , 1994, Chromosome Research.

[107]  P. D. Sudman,et al.  Meiosis in chromosomally heteromorphic goitered gazelle,Gazella subgutturosa (Artiodactyla, Bovidae) , 2005, Chromosome Research.

[108]  R. O’Neill,et al.  Centromere dynamics and chromosome evolution in marsupials. , 2004, The Journal of heredity.

[109]  M. Guichaoua,et al.  Loop formation and synaptic adjustment in a human male heterozygous for two pericentric inversions , 2004, Chromosoma.

[110]  D. Haussler,et al.  Hotspots of mammalian chromosomal evolution , 2004, Genome Biology.

[111]  Steven Henikoff,et al.  Phylogenomics of the nucleosome , 2003, Nature Structural Biology.

[112]  N. Barton,et al.  ACCUMULATING POSTZYGOTIC ISOLATION GENES IN PARAPATRY: A NEW TWIST ON CHROMOSOMAL SPECIATION , 2003, Evolution; international journal of organic evolution.

[113]  Vincent Moulton,et al.  NeighborNet: An Agglomerative Method for the Construction of Planar Phylogenetic Networks , 2002, WABI.

[114]  R. Metzenberg,et al.  Meiotic Silencing by Unpaired DNA , 2001, Cell.

[115]  F. Lapointe,et al.  Phylogeny of the rock-wallabies, Petrogale (Marsupialia : Macropodidae) based on DNA/DNA hybridisation , 2001 .

[116]  C. Sapienza,et al.  Female meiosis drives karyotypic evolution in mammals. , 2001, Genetics.

[117]  M. Noor,et al.  Chromosomal inversions and the reproductive isolation of species , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[118]  S. Henikoff,et al.  The Centromere Paradox: Stable Inheritance with Rapidly Evolving DNA , 2001, Science.

[119]  L H. Rieseberg,et al.  Chromosomal rearrangements and speciation. , 2001, Trends in ecology & evolution.

[120]  N. Marziliano,et al.  Pericentromeric organization at the fusion point of mouse Robertsonian translocation chromosomes. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[121]  Nicholas H. Barton,et al.  IS WRIGHT'S SHIFTING BALANCE PROCESS IMPORTANT IN EVOLUTION? , 2000, Evolution; international journal of organic evolution.

[122]  J. Graves,et al.  Chromosome evolution in kangaroos (Marsupialia: Macropodidae): cross species chromosome painting between the tammar wallaby and rock wallaby spp. with the 2n = 22 ancestral macropodid karyotype. , 1999, Genome.

[123]  N. Kleckner,et al.  Meiotic chromosomes: integrating structure and function. , 1999, Annual review of genetics.

[124]  J. Hausser,et al.  Meiotic drive favors Robertsonian metacentric chromosomes in the common shrew (Sorex araneus, Insectivora, Mammalia) , 1999, Cytogenetic and Genome Research.

[125]  M. Turelli The Causes of Haldane's Rule , 1998, Science.

[126]  P. Slijepcevic Telomeres and mechanisms of Robertsonian fusion , 1998, Chromosoma.

[127]  C. Moritz,et al.  Population structure of the yellow‐footed rock‐wallaby Petrogale xanthopus (Gray, 1854) inferred from mtDNA sequences and microsatellite loci , 1996, Molecular ecology.

[128]  A. Dollin,et al.  Spermatogenesis and synaptonemal complexes of hybrid Petrogale (Marsupialia). , 1996, The Journal of heredity.

[129]  M. Nachman,et al.  Why is the house mouse karyotype so variable? , 1995, Trends in ecology & evolution.

[130]  M. King Species Evolution: The Role of Chromosome Change , 1993 .

[131]  M. Eldridge,et al.  Chromosomal rearrangements in rock wallabies, Petrogale (Marsupialia: Macropodidae). VIII. An investigation of the nonrandom nature of karyotypic change. , 1993, Genome.

[132]  R. Close,et al.  Mitochondrial DNA analysis of introgression between adjacent taxa of rock-wallabies, Petrogale species (Marsupialia: Macropodidae) , 1993 .

[133]  M. Eldridge,et al.  Radiation of chromosome shuffles. , 1993, Current opinion in genetics & development.

[134]  M. Eldridge,et al.  Taxonomy of Rock Wallabies, Petrogale (Marsupialia, Macropodidae) .1. A Revision of the Eastern Petrogale With the Description of 3 New Species , 1992 .

[135]  M. Eldridge,et al.  Chromosomal rearrangements in rock wallabies, Petrogale (Marsupialia: Macropodidae). VII. G-banding analysis of Petrogale brachyotis and P. concinna: species with dramatically altered karyotypes. , 1992, Cytogenetics and cell genetics.

[136]  M. Eldridge,et al.  Chromosomal rearrangements in rock wallabies, Petrogale (Marsupialia: Macropodidae). VI. Determination of the plesiomorphic karyotype: G-banding comparison of Thylogale with Petrogale persephone, P. xanthopus, and P. l. lateralis. , 1992, Cytogenetics and cell genetics.

[137]  M. Eldridge,et al.  Chromosomal rearrangements in rock wallabies, Petrogale (Marsupialia : Macropodidae). IV : G-banding analysis of the Petrogale lateralis complex , 1991 .

[138]  M. Eldridge,et al.  Chromosomal rearrangements in Rock wallabies, Petrogale (Marsupialia:Macropodidae): V. chromosomal phylogeny of the lateralis/penicillata group , 1991 .

[139]  M. Eldridge,et al.  Chromosomal rearrangements in rock wallabies, Petrogale (Marsupialia: Macropodidae). III. G-banding analysis of Petrogale inornata and P. penicillata , 1990 .

[140]  M. Eldridge,et al.  Chromosomal rearrangements in rock wallabies, Petrogale (Marsupialia: Macropodidae). II. G-banding analysis of Petrogale godmani. , 1989, Genome.

[141]  G. Sharman,et al.  Chromosome Evolution, Phylogeny and Speciation of Rock Wallabies (Petrogale, Macropodidae) , 1989 .

[142]  J. Murray,et al.  Chromosomal rearrangements in rock wallabies, petrogale (Marsupialia, macropodidae): I. The petrogale assimilis species complex: G-banding and synaptonemal complex analysis , 1988 .

[143]  Nicholas H. Barton,et al.  The Relative Rates of Evolution of Sex Chromosomes and Autosomes , 1987, The American Naturalist.

[144]  Craig Moritz,et al.  Chromosomal Evolution and Speciation Revisited , 1987 .

[145]  R. Baker,et al.  Speciation by monobrachial centric fusions. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[146]  D. Coates,et al.  Estimating the genic and chromosomal components of reproductive isolation within and between subspecies of the grasshopper Caledia captiva , 1986 .

[147]  R. Lande,et al.  The fixation of chromosomal rearrangements in a subdivided population with local extinction and colonization , 1985, Heredity.

[148]  N. Fechheimer,et al.  Synaptonemal complex analysis of a pericentric inversion in chromosome 2 of domestic fowl, Gallus domesticus. , 1985, Cytogenetics and cell genetics.

[149]  D. Hayman,et al.  G-banding evidence for a conserved complement in the Marsupialia. , 1985, Cytogenetics and cell genetics.

[150]  J. B. Walsh,et al.  Rate of Accumulation of Reproductive Isolation by Chromosome Rearrangements , 1982, The American Naturalist.

[151]  D. Briscoe,et al.  Isolation, Introgression and Genetic Variation in Rock-Wallabies , 1982 .

[152]  S. H. James Coadaptation of the genetic system and the evolution of isolation among populations of Western Australian native plants. , 1982, Progress in clinical and biological research.

[153]  S. Wright,et al.  The shifting balance theory and macroevolution. , 1982, Annual review of genetics.

[154]  A. Templeton MECHANISMS OF SPECIATION­ A POPULATION GENETIC APPROACH , 1981 .

[155]  D. Futuyma,et al.  Non-Allopatric Speciation in Animals , 1980 .

[156]  D. Woodruff Mechanisms of speciation. , 1978, Science.

[157]  A. Wilson,et al.  Rapid speciation and chromosomal evolution in mammals. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[158]  B. Charlesworth Inversion polymorphism in a two-locus genetic system. , 1974, Genetical research.

[159]  K. Key The Concept of Stasipatric Speciation , 1968 .

[160]  M. Nei,et al.  Frequency changes of new inversions in populations under mutation-selection equilibria. , 1967, Genetics.

[161]  Essays on Evolution , 1962, Nature.

[162]  C. Waddington,et al.  “Animal Cytology and Evolution” , 1955, Nature.

[163]  G. Ledyard Stebbins,et al.  Variation and Evolution in Plants , 1951 .

[164]  T. Dobzhansky,et al.  Genetics of natural populations. XIX. Origin of heterosis through natural selection in populations of Drosophila pseudoobscura. , 1950, Genetics.

[165]  H. Muller The Evolution of Genetic Systems , 1939, Nature.

[166]  A. Sturtevant Essays on Evolution. III. On the Origin of Interspecific Sterility , 1938, The Quarterly Review of Biology.

[167]  T. Dobzhansky Studies on Hybrid Sterility. II. Localization of Sterility Factors in Drosophila Pseudoobscura Hybrids. , 1936, Genetics.