Asymmetric Anion-π Catalysis on Perylenediimides.

Anion-π catalysis, that is the stabilization of anionic transition states on π-acidic aromatic surfaces, has so far been developed with naphthalenediimides (NDIs). This report introduces perylenediimides (PDIs) to anion-π catalysis. The quadrupole moment of PDIs (+23.2 B) is found to exceed that of NDIs and reach new records with acceptors in the core (+70.9 B), and their larger surface provides space to better accommodate chemical transformations. Unlike NDIs, the activity of PDI catalysts for enolate and enamine addition is determined by the twist of their π surface rather than their reducibility. These results, further strengthened by nitrate inhibition and circular dichroism spectroscopy, support an understanding of anion-π interactions centered around quadrupole moments, i.e., electrostatic contributions, rather than redox potentials and charge transfer. The large PDI surfaces provide access to the highest enantioselectivities observed so far in anion-π catalysis (96 % ee).

[1]  Eric N. Jacobsen,et al.  Die Kation‐π‐Wechselwirkung in der Katalyse mit niedermolekularen Verbindungen , 2016 .

[2]  Song Lin,et al.  The Cation-π Interaction in Small-Molecule Catalysis. , 2016, Angewandte Chemie.

[3]  S. Bhosale,et al.  Functional Naphthalene Diimides: Synthesis, Properties, and Applications. , 2016, Chemical reviews.

[4]  S. Matile,et al.  Asymmetric Anion-π Catalysis of Iminium/Nitroaldol Cascades To Form Cyclohexane Rings with Five Stereogenic Centers Directly on π-Acidic Surfaces. , 2016, Journal of the American Chemical Society.

[5]  Raquel P. Herrera,et al.  Trifunctional Squaramide Catalyst for Efficient Enantioselective Henry Reaction Activation , 2016 .

[6]  S. Matile,et al.  Anion-π Enzymes , 2016, ACS central science.

[7]  S. Matile,et al.  Anion-π Catalysis of Enolate Chemistry: Rigidified Leonard Turns as a General Motif to Run Reactions on Aromatic Surfaces. , 2016, Angewandte Chemie.

[8]  S. Matile,et al.  Unorthodox Interactions at Work. , 2016, Journal of the American Chemical Society.

[9]  Gevorg Sargsyan,et al.  Enolate Stabilization by Anion-π Interactions: Deuterium Exchange in Malonate Dilactones on π-Acidic Surfaces. , 2016, Chemistry.

[10]  David Schmidt,et al.  Perylene Bisimide Dye Assemblies as Archetype Functional Supramolecular Materials. , 2016, Chemical reviews.

[11]  S. Matile,et al.  Core‐Substituted Naphthalenediimides: LUMO Levels Revisited, in Comparison with Preylenediimides with Sulfur Redox Switches in the Core , 2016, ChemistryOpen.

[12]  K. Rissanen,et al.  Experimental investigation of anion-π interactions--applications and biochemical relevance. , 2016, Chemical communications.

[13]  J. Parquette,et al.  A self-assembled nanotube for the direct aldol reaction in water. , 2015, Chemical communications.

[14]  De‐Xian Wang,et al.  Self-Assembly and Disassembly of Vesicles as Controlled by Anion-π Interactions. , 2015, Angewandte Chemie.

[15]  S. Matile,et al.  Asymmetric Anion-π Catalysis: Enamine Addition to Nitroolefins on π-Acidic Surfaces. , 2015, Journal of the American Chemical Society.

[16]  S. Matile,et al.  Selective acceleration of disfavored enolate addition reactions by anion–π interactions† †Electronic supplementary information (ESI) available: Detailed procedures and results for all reported experiments. See DOI: 10.1039/c5sc02563j , 2015, Chemical science.

[17]  Antonio Bauzá,et al.  The bright future of unconventional σ/π-hole interactions. , 2015, Chemphyschem : a European journal of chemical physics and physical chemistry.

[18]  K. Ohkubo,et al.  Submillisecond-lived photoinduced charge separation in a fully conjugated phthalocyanine–perylenebenzimidazole dyad , 2014 .

[19]  Albrecht Berkessel,et al.  Anionenbindungskatalyse durch elektronenarme Pyridiniumionen , 2014 .

[20]  Somnath Das,et al.  Anion-binding catalysis by electron-deficient pyridinium cations. , 2014, Angewandte Chemie.

[21]  E. Cabaleiro-Lago,et al.  Interaction of anions with substituted buckybowls. The anion's nature and solvent effects. , 2014, The journal of physical chemistry. A.

[22]  S. Matile,et al.  Anion-π catalysis. , 2014, Journal of the American Chemical Society.

[23]  Severin T. Schneebeli,et al.  Electron sharing and anion-π recognition in molecular triangular prisms. , 2013, Angewandte Chemie.

[24]  M. Wasielewski,et al.  Singlet exciton fission in polycrystalline thin films of a slip-stacked perylenediimide. , 2013, Journal of the American Chemical Society.

[25]  S. Matile,et al.  Catalysis with anion-π interactions. , 2013, Angewandte Chemie.

[26]  P. Ballester Experimental quantification of anion-π interactions in solution using neutral host-guest model systems. , 2013, Accounts of chemical research.

[27]  K. Dunbar,et al.  Anion-π interactions in supramolecular architectures. , 2013, Accounts of chemical research.

[28]  S. Youngme,et al.  Construction of a 3D supramolecular network from 2D coordination layers via anion–π interactions and its catalytic properties , 2012 .

[29]  L. Cavallo,et al.  Hexafluorobenzene: a powerful solvent for a noncovalent stereoselective organocatalytic Michael addition reaction. , 2012, Chemical communications.

[30]  Stefan Matile,et al.  Stack exchange strategies for the synthesis of covalent double-channel photosystems by self-organizing surface-initiated polymerization. , 2011, Journal of the American Chemical Society.

[31]  Chen Li,et al.  Efficient tuning of LUMO levels of 2,5,8,11-substituted perylenediimides via copper catalyzed reactions. , 2011, Organic letters.

[32]  M. Renz,et al.  Impact of molecular flexibility on binding strength and self-sorting of chiral π-surfaces. , 2011, Journal of the American Chemical Society.

[33]  D. Quiñonero,et al.  Cation–π and anion–π interactions , 2011 .

[34]  D. Quiñonero,et al.  Relevant anion-π interactions in biological systems: the case of urate oxidase. , 2011, Angewandte Chemie.

[35]  De‐Xian Wang,et al.  Anion recognition by charge neutral electron-deficient arene receptors. , 2011, Chimia.

[36]  M. Mayor,et al.  Experimental evidence for the functional relevance of anion-pi interactions. , 2010, Nature chemistry.

[37]  Dongho Kim,et al.  Regioselective Ru-catalyzed direct 2,5,8,11-alkylation of perylene bisimides. , 2009, Chemistry.

[38]  S. Matile,et al.  Rigid oligoperylenediimide rods: anion-pi slides with photosynthetic activity. , 2008, Angewandte Chemie.

[39]  J. Lubkoll,et al.  Mimicry of polyketide synthases--enantioselective 1,4-addition reactions of malonic acid half-thioesters to nitroolefins. , 2007, Angewandte Chemie.

[40]  Jana Lubkoll Dipl.-Chem.,et al.  Mimicry of Polyketide Synthases—Enantioselective 1,4-Addition Reactions of Malonic Acid Half-Thioesters to Nitroolefins† , 2007 .

[41]  S. Matile,et al.  Rigid oligonaphthalenediimide rods as transmembrane anion-pi slides. , 2006, Journal of the American Chemical Society.

[42]  David Quiñonero,et al.  Anion-pi Interactions: do they exist? , 2002, Angewandte Chemie.

[43]  José Elguero,et al.  Interaction of anions with perfluoro aromatic compounds. , 2002, Journal of the American Chemical Society.

[44]  Michael D Bartberger,et al.  Anion-aromatic bonding: a case for anion recognition by pi-acidic rings. , 2002, Journal of the American Chemical Society.

[45]  Stefan Matile,et al.  p-Octiphenyl β-Barrels with Ion Channel and Esterase Activity , 2001 .

[46]  J. Rebek,et al.  Convergent Functional Groups: Intramolecular Acyl Transfer through a 34-Membered Ring , 1998 .

[47]  Christopher Jones Circular dichroism: Principles and applications , 1995 .

[48]  H. Schneider,et al.  Attractive interactions between negative charges and polarizable aryl parts of host–guest systems , 1993 .

[49]  A. Hinchliffe,et al.  Quadrupole moment calculations for some aromatic hydrocarbons , 1981 .