Classical-quantum arbitrarily varying wiretap channel: common randomness assisted code and continuity

We determine the secrecy capacities under common randomness assisted coding of arbitrarily varying classical-quantum wiretap channels. Furthermore, we determine the secrecy capacity of a mixed channel model which is compound from the sender to the legitimate receiver and varies arbitrarily from the sender to the eavesdropper. We examine when the secrecy capacity is a continuous function of the system parameters as an application and show that resources, e.g., having access to a perfect copy of the outcome of a random experiment, can guarantee continuity of the capacity function of arbitrarily varying classical-quantum wiretap channels.

[1]  D. Blackwell,et al.  The Capacities of Certain Channel Classes Under Random Coding , 1960 .

[2]  R. Ahlswede Elimination of correlation in random codes for arbitrarily varying channels , 1978 .

[3]  Holger Boche,et al.  Arbitrarily Small Amounts of Correlation for Arbitrarily Varying Quantum Channels , 2013 .

[4]  Michael D. Westmoreland,et al.  Sending classical information via noisy quantum channels , 1997 .

[5]  Holger Boche,et al.  Positivity, discontinuity, finite resources, nonzero error for arbitrarily varying quantum channels , 2014, 2014 IEEE International Symposium on Information Theory.

[6]  Holger Boche,et al.  Secrecy capacities of compound quantum wiretap channels and applications , 2013, ArXiv.

[7]  Rudolf Ahlswede,et al.  Correlated sources help transmission over an arbitrarily varying channel , 1997, IEEE Trans. Inf. Theory.

[8]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[9]  Moritz Wiese,et al.  The Arbitrarily Varying Wiretap Channel—Secret Randomness, Stability, and Super-Activation , 2016, IEEE Transactions on Information Theory.

[10]  K. Audenaert A sharp continuity estimate for the von Neumann entropy , 2006, quant-ph/0610146.

[11]  Tetsunao Matsuta,et al.  国際会議開催報告:2013 IEEE International Symposium on Information Theory , 2013 .

[12]  Holger Boche,et al.  Erratum to: Entanglement Transmission and Generation under Channel Uncertainty: Universal Quantum Channel Coding , 2009 .

[13]  R. Schumann Quantum Information Theory , 2000, quant-ph/0010060.

[14]  Petr Hajicek Black hole interacting with matter as a simple dynamical system , 1999 .

[15]  Martin Mathieu COMPLETELY BOUNDED MAPS AND OPERATOR ALGEBRAS (Cambridge Studies in Advanced Mathematics 78) , 2004 .

[16]  V. Milman,et al.  Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .

[17]  Igor Devetak The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.

[18]  Holger Boche,et al.  Classical-quantum arbitrarily varying wiretap channel—A capacity formula with Ahlswede Dichotomy—Resources , 2013, 2014 IEEE International Symposium on Information Theory.

[19]  Moritz Wiese,et al.  A Channel Under Simultaneous Jamming and Eavesdropping Attack—Correlated Random Coding Capacities Under Strong Secrecy Criteria , 2014, IEEE Transactions on Information Theory.

[20]  Holger Boche,et al.  Capacity results and super-activation for wiretap channels with active wiretappers , 2013, IEEE Transactions on Information Forensics and Security.

[21]  Imre Csiszár,et al.  The capacity of the arbitrarily varying channel revisited: Positivity, constraints , 1988, IEEE Trans. Inf. Theory.

[22]  R. Ahlswede A Note on the Existence of the Weak Capacity for Channels with Arbitrarily Varying Channel Probability Functions and Its Relation to Shannon's Zero Error Capacity , 1970 .

[23]  RUDOLF AHLSWEDE Arbitrarily varying channels with states sequence known to the sender , 1986, IEEE Trans. Inf. Theory.

[24]  A.S.Holevo The Capacity of Quantum Channel with General Signal States , 1996, quant-ph/9611023.

[25]  Rudolf Ahlswede,et al.  Strong converse for identification via quantum channels , 2000, IEEE Trans. Inf. Theory.

[26]  Tomohiro Ogawa,et al.  Making Good Codes for Classical-Quantum Channel Coding via Quantum Hypothesis Testing , 2007, IEEE Transactions on Information Theory.

[27]  Holger Boche,et al.  Classical Capacities of Averaged and Compound Quantum Channels , 2007, ArXiv.

[28]  Ning Cai,et al.  Quantum privacy and quantum wiretap channels , 2004, Probl. Inf. Transm..

[29]  Holger Boche,et al.  Secrecy results for compound wiretap channels , 2011, Probl. Inf. Transm..

[30]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[31]  Rudolf Ahlswede,et al.  Classical Capacity of Classical-Quantum Arbitrarily Varying Channels , 2007, IEEE Transactions on Information Theory.

[32]  J. N. Laneman,et al.  On the secrecy capacity of arbitrary wiretap channels , 2008, 2008 46th Annual Allerton Conference on Communication, Control, and Computing.

[33]  Holger Boche,et al.  Classical–quantum arbitrarily varying wiretap channel: Ahlswede dichotomy, positivity, resources, super-activation , 2013, Quantum Inf. Process..

[34]  Rudolf Ahlswede,et al.  Quantum Capacity under Adversarial Quantum Noise: Arbitrarily Varying Quantum Channels , 2010, ArXiv.

[35]  I. Devetak,et al.  The private classical information capacity and quantum information capacity of a quantum channel , 2003 .

[36]  Christian Deppe,et al.  Information Theory, Combinatorics, and Search Theory , 2013, Lecture Notes in Computer Science.

[37]  M. Fannes A continuity property of the entropy density for spin lattice systems , 1973 .

[38]  Andreas J. Winter,et al.  Coding theorem and strong converse for quantum channels , 1999, IEEE Trans. Inf. Theory.

[39]  Holger Boche,et al.  Entanglement Transmission and Generation under Channel Uncertainty: Universal Quantum Channel Coding , 2008 .

[40]  Masahito Hayashi,et al.  General formulas for capacity of classical-quantum channels , 2003, IEEE Transactions on Information Theory.

[41]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[42]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[43]  Holger Boche,et al.  Capacity Results for Arbitrarily Varying Wiretap Channels , 2012, Information Theory, Combinatorics, and Search Theory.

[44]  Thomas H. E. Ericson,et al.  Exponential error bounds for random codes in the arbitrarily varying channel , 1985, IEEE Trans. Inf. Theory.

[45]  Holger Boche,et al.  Arbitrarily Varying and Compound Classical-Quantum Channels and a Note on Quantum Zero-Error Capacities , 2012, Information Theory, Combinatorics, and Search Theory.

[46]  Holger Boche,et al.  Arbitrarily small amounts of correlation for arbitrarily varying quantum channels , 2013, 2013 IEEE International Symposium on Information Theory.

[47]  Holger Boche,et al.  Classical Capacities of Compound and Averaged Quantum Channels , 2007, IEEE Transactions on Information Theory.

[48]  M. Fannes,et al.  Continuity of quantum conditional information , 2003, quant-ph/0312081.

[49]  Rudolf Ahlswede,et al.  Coloring hypergraphs: A new approach to multi-user source coding, 1 , 1979 .

[50]  Minglai Cai,et al.  Classical-Quantum Arbitrarily Varying Wiretap Channel , 2012, Information Theory, Combinatorics, and Search Theory.

[51]  D. Leung,et al.  Continuity of Quantum Channel Capacities , 2008, 0810.4931.

[52]  Alessandro Panconesi,et al.  Concentration of Measure for the Analysis of Randomized Algorithms , 2009 .

[53]  M. Wilde Quantum Information Theory: Noisy Quantum Shannon Theory , 2013 .