Electron dynamics in H−/Na/Cu(1 1 1) collisions

[1]  J. Rabalais,et al.  Band gap effect on H- ion survival near Cu surfaces , 2005 .

[2]  A. Borisov,et al.  Broadening mechanisms for the adsorbate-induced resonance in the Na/Cu(1 1 1) and Cs/Cu(1 1 1) systems , 2005 .

[3]  H. Chakraborty,et al.  Resonant neutralization of H ˛ near Cu surfaces: Effects of the surface symmetry and ion trajectory , 2004 .

[4]  A. Borisov,et al.  Image and adsorbate state dependence on the adsorbate coverage in the Na/Cu(1 1 1) system , 2003 .

[5]  E. Heller,et al.  Colloquium: Theory of quantum corrals and quantum mirages , 2002, cond-mat/0211607.

[6]  A. Borisov,et al.  Scattering by alkali adsorbates as a decay mechanism for image potential states on Cu surfaces , 2002 .

[7]  M. Weinelt Decay and dephasing of image-potential states studied by time-resolved two-photon photoemission , 2001 .

[8]  G. Bihlmayer,et al.  Femtosecond electron dynamics of image-potential states on clean and oxygen-covered Pt"111… , 2001 .

[9]  A. Borisov,et al.  Resonant charge transfer in Li+ collisions on a metal surface : Geometrical size of the perturbation introduced by an alkali impurity , 2000 .

[10]  P. Echenique,et al.  Image potential states on metal surfaces: binding energies and wave functions , 1999 .

[11]  M. Aeschlimann,et al.  Decay dynamics of photoexcited alkali chemisorbates: Real-time investigations in the femtosecond regime , 1999 .

[12]  A. Borisov,et al.  RESONANT CHARGE TRANSFER IN ION-METAL SURFACE COLLISIONS : EFFECT OF A PROJECTED BAND GAP IN THE H--CU(111) SYSTEM , 1999 .

[13]  H. Petek,et al.  PHASE AND ENERGY RELAXATION IN AN ANTIBONDING SURFACE STATE : CS/CU(111) , 1999 .

[14]  G. Ertl,et al.  Can we control lifetimes of electronic states at surfaces by adsorbate resonances , 1998 .

[15]  M. Aeschlimann,et al.  RESONANCE LIFETIME AND ENERGY OF AN EXCITED CS STATE ON CU(111) , 1997 .

[16]  A. Kazansky,et al.  WAVE PACKET STUDY OF H- DECAY IN FRONT OF A METAL SURFACE , 1996 .

[17]  Wang,et al.  Two-dimensional electron-scattering processes on Na-dosed Cu(111): A two-photon photoemission study. , 1995, Physical review. B, Condensed matter.

[18]  A. Borisov,et al.  Interaction Between Overlapping Quasi-Stationary States: He (2 1S and 2 1P) Levels in Front of an Aluminium Surface , 1994 .

[19]  T. Fauster,et al.  Coverage-dependent electronic structure of Na on Cu(111) , 1994 .

[20]  Fischer,et al.  Lifetime of image-potential states on metal surfaces. , 1992, Physical review. B, Condensed matter.

[21]  D. Heskett,et al.  Surface science lettersThe structure of Na overlayers on Cu(111) at room temperature , 1991 .

[22]  J. Rabalais Scattering and Recoiling Spectrometry: An Ion's Eye View of Surface Structure , 1990, Science.

[23]  J. Rabalais,et al.  Time‐of‐flight scattering and recoiling spectrometer (TOF‐SARS) for surface analysis , 1990 .

[24]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[25]  Cohen,et al.  Stripping of H- in low-energy collisions with antiprotons: Classical-trajectory Monte Carlo calculation. , 1986, Physical review. A, General physics.

[26]  F. Masnou-Seeuws,et al.  Model potential calculations for the ground, excited and Rydberg 2Σ states of Li2+, Na2+ and K2+: Core polarization effects , 1983 .