Regularization for Parameter Identification Using Multi-Objective Optimization

Summary. Regularization is a technique used in finding a stable solution when a parameter identification problem is exposed to considerable errors. However a significant difficulty associated with it is that the solution depends upon the choice of the value assigned onto the weighting regularization parameter participating in the corresponding formulation. This chapter initially and briefly describes the weighted regularization method. It continues by introducing a weightless regularization approach that reduces the parameter identification problem to multi-objective optimization. Subsequently, a gradient-based multi-objective optimization method with Lagrange multipliers, is presented. Comparative numerical results with explicitly defined objective functions demonstrate that the technique can search for appropriate solutions more efficiently than other existing techniques. Finally, the technique was successfully applied for the parameter identification of a material model 1 .

[1]  V. A. Morozov,et al.  Methods for Solving Incorrectly Posed Problems , 1984 .

[2]  J. Chaboche Constitutive equations for cyclic plasticity and cyclic viscoplasticity , 1989 .

[3]  T. Brubaker,et al.  Nonlinear Parameter Estimation , 1979 .

[4]  Shiro Kubo,et al.  Characterization of the Tikhonov regularization for numerical analysis of inverse boundary value problems by using the singular value decomposition , 1998 .

[5]  Per Christian Hansen,et al.  Analysis of Discrete Ill-Posed Problems by Means of the L-Curve , 1992, SIAM Rev..

[6]  Teresa Reginska,et al.  A Regularization Parameter in Discrete Ill-Posed Problems , 1996, SIAM J. Sci. Comput..

[7]  William H. Press,et al.  Numerical recipes in C , 2002 .

[8]  Jianping Zhu,et al.  An efficient numerical algorithm with adaptive regularization for parameter estimations , 1998 .

[9]  Y. Honjo,et al.  Matching objective and subjective information in geotechnical inverse analysis based on entrophy minimization , 1998 .

[10]  Panos Y. Papalambros,et al.  Principles of Optimal Design: Author Index , 2000 .

[11]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[12]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[13]  Genki Yagawa,et al.  Implicit constitutive modelling for viscoplasticity using neural networks , 1998 .

[14]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[15]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[16]  Carl August Zehnder,et al.  Numerical methods of mathematical optimization , 1971 .

[17]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[18]  T. Kitagawa A deterministic approach to optimal regularization —The finite dimensional case— , 1987 .

[19]  Genki Yagawa,et al.  INELASTIC CONSTITUTIVE PARAMETER IDENTIFICATION USING AN EVOLUTIONARY ALGORITHM WITH CONTINUOUS INDIVIDUALS , 1997 .

[20]  J. Baumeister Stable solution of inverse problems , 1987 .

[21]  E. M. L. Beale,et al.  Introduction to Optimization Techniques: Fundamentals and Applications of Nonlinear Programming , 1972 .

[22]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[23]  Thomas Bäck,et al.  Genetic Algorithms and Evolution Strategies - Similarities and Differences , 1990, PPSN.

[24]  C. W. Groetsch,et al.  The theory of Tikhonov regularization for Fredholm equations of the first kind , 1984 .

[25]  Tomonari Furukawa,et al.  Parameter identification with weightless regularization , 2001 .

[26]  Takashi Kitagawa A Numerical Method to Estimate the Optimal Regularization Parameter , 1989 .