Superconducting transition temperatures in the electronic and magnetic phase diagrams of Sr2VFeAsO3−δ, a superconductor

We elucidate the magnetic phases and superconducting (SC) transition temperatures (Tc) in Sr2VFeAsO3−δ (21113V), an iron-based superconductor with a thick-blocking layer fabricated from a perovskite-related transition metal oxide. At low temperatures (T  <  37.1 K), 21113V exhibited a SC phase in the range 0.031  ⩽  δ  ⩽  0.145 and an antiferromagnetic (AFM) iron sublattice in the range 0.267  ⩽  δ  ⩽  0.664. Mixed-valent vanadium exhibited a dominant AFM phase in 0.031  ⩽  δ  ⩽  0.088, and a partial ferrimagnetic (Ferri.) phase in the range 0.124  ⩽  δ  ⩽  0.664. The Ferri. phase was the most dominant at a δ value of 0.267, showing an AFM phase of Fe at T  <  20 K. Increasing the spontaneous magnetic moments reduced the magnetic shielding volume fraction due to the SC phase. This result was attributed to the magnetic phase of vanadium, which dominates the superconductivity of Fe in 21113V. The Tc–δ curve showed two maxima. The smaller and larger of Tc maxima occurred at δ  =  0.073 and δ  =  0.145, respectively; the latter resides on the phase boundary between AFM and the partial Ferri. phases of vanadium. 21113V is a useful platform for verifing new mechanisms of Tc enhancement in iron-based superconductors.

[1]  M. Horio,et al.  Local Magnetic States of the Weakly Ferromagnetic Iron-Based Superconductor Sr2VFeAsO3−δ Studied by X-ray Magnetic Circular Dichroism , 2018, Journal of the Physical Society of Japan.

[2]  K. Yasuoka,et al.  Oxygen vacancy-originated highly active electrocatalysts for the oxygen evolution reaction , 2018 .

[3]  P. Hirschfeld,et al.  Raising the Critical Temperature by Disorder in Unconventional Superconductors Mediated by Spin Fluctuations. , 2017, Physical review letters.

[4]  M. Gastiasoro,et al.  Enhancing superconductivity by disorder , 2017, Physical Review B.

[5]  J. Shim,et al.  Frustration-driven C4 symmetric order in a naturally-heterostructured superconductor Sr2VO3FeAs , 2017, Nature Communications.

[6]  S. Cheong,et al.  Switching Magnetism and Superconductivity with Spin-Polarized Current in Iron-Based Superconductor. , 2017, Physical review letters.

[7]  A. Eberlein,et al.  Coexistence of Incommensurate Magnetism and Superconductivity in the Two-Dimensional Hubbard Model. , 2015, Physical review letters.

[8]  H. Hosono,et al.  Superconductivity in Iron Oxypnictide Induced by F-Doping , 2016 .

[9]  H. Hosono,et al.  Iron-based superconductors: Current status of materials and pairing mechanism , 2015, 1504.04919.

[10]  H. Wen,et al.  Microstructural evolution and its influence on the superconductivity induced by oxygen vacancies in Sr2VO3-delta FeAs (delta=0.1, 0.5) , 2014 .

[11]  A. J. Corkett,et al.  Control of the Superconducting Properties of Sr2-xCaxVO3FeAs Through Isovalent Substitution. , 2014 .

[12]  A. J. Corkett,et al.  Control of the superconducting properties of Sr{sub 2−x}Ca{sub x}VO{sub 3}FeAs through isovalent substitution , 2014 .

[13]  S. Kawasaki,et al.  Magnetism and superconductivity in Sr2 VFeAsO3 revealed by 75 As- and 51 V-NMR under elevated pressures , 2014, 1405.3048.

[14]  J. Shimoyama Potentials of iron-based superconductors for practical future materials , 2014 .

[15]  S. Kawasaki,et al.  Magnetism and superconductivity in Sr2VFeAsO3 revealed by As-75- and V-51-NMR under elevated pressures , 2014 .

[16]  A. Senyshyn,et al.  Weak magnetism and the Mott state of vanadium in superconducting Sr_{2}VO_{3}FeAs , 2013, 1307.2138.

[17]  Y. Kamihara,et al.  Annealing induced superconductivity in perovskite-related iron-based mixed anion compounds Sr2VFeAsO3−δ , 2013 .

[18]  T. Sasagawa,et al.  Crystal growth and anisotropic superconducting properties of Sr2VFeAsO3 , 2013 .

[19]  D. Scalapino A common thread: The pairing interaction for unconventional superconductors , 2012, 1207.4093.

[20]  H. Hosono,et al.  Correction: Corrigendum: Two-dome structure in electron-doped iron arsenide superconductors , 2012, Nature Communications.

[21]  A. L. Ivanovskii,et al.  The influence of oxygen deficiency on structural and electronic properties of layered superconductor (Fe2As2)(Sr4V2O6−x) , 2012, Journal of Materials Science.

[22]  E. Baggio-Saitovitch,et al.  Static magnetic order of Sr(4)A(2)O(6)Fe(2)As(2) (A = Sc and V) revealed by Mossbauer and muon spin relaxation spectroscopies , 2011 .

[23]  G. Stewart Superconductivity in iron compounds , 2011, 1106.1618.

[24]  X. Dai,et al.  Quasinested Fe orbitals versus Mott-insulating V orbitals in superconducting Sr 2 VFeAsO 3 as seen from angle-resolved photoemission , 2011 .

[25]  David J. Singh,et al.  Variation of physical properties in the nominal Sr4V2O6Fe2As2 , 2011 .

[26]  J. Karpinski,et al.  Shape of spin density wave versus temperature in AFe 2 As 2 (A = Ca, Ba, Eu): A Mössbauer study , 2011, 1101.3225.

[27]  S. Zhang,et al.  Magnetic and electrical properties and carrier doping effects on the iron-based host compound Sr2ScFeAsO3 , 2010, 1012.0616.

[28]  E. Satomi,et al.  Magnetic Ordering in V-Layers of the Superconducting System of Sr2VFeAsO3 , 2010, 1012.2654.

[29]  A. Senyshyn,et al.  Possible magnetic order and suppression of superconductivity by V doping in Sr2VO3FeAs , 2010 .

[30]  Y. Ikuhara,et al.  A new homologous series of iron pnictide oxide superconductors (Fe2As2)(Can + 2(Al, Ti)nOy) (n = 2, 3, 4) , 2010, 1008.2582.

[31]  Superconductivity at 28.3 and 17.1 K in (Ca4Al2O6-y)(Fe2Pn2) (Pn = As and P) , 2010, 1008.2586.

[32]  H. Kontani,et al.  Orbital fluctuation theory in iron pnictides: Effects of As-Fe-As bond angle, isotope substitution, and Z2-orbital pocket on superconductivity , 2010, 1008.1765.

[33]  Fu-Chun Zhang,et al.  Self-doping effect and successive magnetic transitions in superconducting Sr 2 VFeAsO 3 , 2010, 1007.3980.

[34]  Shinya Sato,et al.  Homologous series of iron pnictide oxide superconductors (Fe2As2)[Can+1(Sc,Ti)nOy] (n=3,4,5) with extremely thick blocking layers , 2010, 1006.2355.

[35]  Hiroki Nakamura,et al.  Magnetic ordering in blocking layer and highly anisotropic electronic structure of high- T c iron-based superconductor Sr 2 VFeAsO 3 : LDA + U study , 2010, 1004.4741.

[36]  Shinya Sato,et al.  Superconductivity in new iron pnictide oxide Fe$_{2}$As$_{2}$Sr$_{4}$(Mg,Ti)$_{2}$O$_{6}$ , 2010 .

[37]  M. Brunelli,et al.  Non-stoichometry and the magnetic structure of Sr2CrO3FeAs , 2009, 0911.0450.

[38]  I. Mazin Sr 2 VO 3 FeAs as compared to other iron-based superconductors , 2009, 0909.5174.

[39]  K. Lee,et al.  Sr2VO3FeAs: A nanolayered bimetallic iron pnictide superconductor , 2009, 0908.2698.

[40]  H. Hosono,et al.  Electronic and magnetic phase diagram of superconductors, SmFeAsO1−xFx , 2009, 0904.3173.

[41]  Xiyu Zhu,et al.  Structural and transport properties of Sr2VO3−δ FeAs superconductors with different oxygen deficiencies , 2009, 0910.1537.

[42]  Shinya Sato,et al.  Superconductivity in a new iron pnictide oxide (Fe2As2)(Sr4(Mg, Ti)2O6) , 2009, 0909.2945.

[43]  K. Kishio,et al.  Contrasting Pressure Effects in Sr2VFeAsO3 and Sr2ScFePO3 , 2009, 0908.1469.

[44]  R. Pöttgen,et al.  Low-temperature Crystal Structure and 57Fe Mössbauer Spectroscopy of Sr3Sc2O5Fe2As2 , 2009 .

[45]  D. Johrendt,et al.  Low Temperature Crystal Structure and 57Fe Moessbauer Spectroscopy of Sr3Sc2O5Fe2As2 , 2009, 0905.0337.

[46]  R. S. Meena,et al.  Single-Step Synthesis of Sr4V2O6Fe2As2: The Blocking Layer Based Potential Future Superconductor , 2009, 0904.3214.

[47]  R. Arita,et al.  Pnictogen height as a possible switch between high- T c nodeless and low- T c nodal pairings in the iron-based superconductors , 2009, 0904.2612.

[48]  Peng Cheng,et al.  Transition of stoichiometric Sr2VO3FeAs to a superconducting state at 37.2 K , 2009, 0904.1732.

[49]  Xiyu Zhu,et al.  Superconductivity in Ti-doped iron-arsenide compound Sr4Cr0.8Ti1.2O6Fe2As2 , 2009, 0904.0972.

[50]  D. Johrendt,et al.  The Layered Iron Arsenide Oxides Sr2CrO3FeAs and Ba2ScO3FeAs , 2009, 0904.0479.

[51]  X. H. Chen,et al.  Structure and physical properties of the new layered oxypnictides Sr4Sc2O6M2As2 (M=Fe and Co) , 2009, 0903.5484.

[52]  K. Kishio,et al.  New iron-based arsenide oxides (Fe2As2)(Sr4M2O6)(M = Sc, Cr) , 2009, 0903.5124.

[53]  H. Yang,et al.  Possible high temperature superconductivity in a Ti-doped A–Sc–Fe–As–O (A = Ca, Sr) system , 2009, 0903.5273.

[54]  K. Kishio,et al.  Superconductivity at 17 K in (Fe2P2)(Sr4Sc2O6): a new superconducting layered pnictide oxide with a thick perovskite oxide layer , 2009, 0903.3314.

[55]  R. Arita,et al.  Erratum: Unconventional pairing originating from the disconnected fermi surfaces of superconducting LaFeAsO1-xFx (Physical Review Letters (2008) 101 (087004)) , 2009 .

[56]  Zhu Xi Superconductivity in Ti-doped iron-arsenide compound Sr_4Cr_(0.8)Ti_(1.2)O_6Fe_2As_2 , 2009 .

[57]  Xiyu Zhu,et al.  (Sr_3Sc_2O_5)Fe_2As_2 as a possible parent compound for FeAs-based superconductors , 2008, 0811.2205.

[58]  C. Hess,et al.  The intrinsic electronic phase diagram of iron-oxypnictide superconductors , 2008, 0811.1601.

[59]  M. Johannes,et al.  Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1-xFx. , 2008, Physical review letters.

[60]  H. Eisaki,et al.  Effect of Structural Parameters on Superconductivity in Fluorine-Free LnFeAsO1-y (Ln = La, Nd) , 2008, 0806.3821.

[61]  Hideo Hosono,et al.  Iron-Based Layered Superconductor La[O1-xFx]FeAs (x = 0.05—0.12) with Tc = 26 K. , 2008 .

[62]  D. Johrendt,et al.  Spin-density-wave anomaly at 140 K in the ternary iron arsenide BaFe 2 As 2 , 2008, 0805.4021.

[63]  H. Hosono,et al.  Spin Ordering in LaFeAsO and Its Suppression in Superconductor LaFeAsO0.89F0.11 Probed by Mössbauer Spectroscopy , 2008, 0805.0041.

[64]  R. Arita,et al.  Unconventional pairing originating from the disconnected Fermi surfaces of superconducting LaFeAsO1-xFx. , 2008, Physical review letters.

[65]  Hideo Hosono,et al.  Iron-based layered superconductor La[O(1-x)F(x)]FeAs (x = 0.05-0.12) with T(c) = 26 K. , 2008, Journal of the American Chemical Society.

[66]  F. Izumi,et al.  Three-Dimensional Visualization in Powder Diffraction , 2007 .

[67]  T. Moriya Developments of the theory of spin fluctuations and spin fluctuation-induced superconductivity , 2006, Proceedings of the Japan Academy. Series B, Physical and biological sciences.

[68]  A. Vlaicu,et al.  X-ray absorption fine structure combined with x-ray fluorescence spectrometry. Part 15. Monitoring of vanadium site transformations on titania and in mesoporous titania by selective detection of the vanadium K alpha1 fluorescence. , 2005, The journal of physical chemistry. B.

[69]  T. Fujii,et al.  Structural Study of Inhomogeneous Charge Distribution of Inequivalent CuO2 Planes in Bi2.1Sr1.9Ca2Cu3O10+δ Single Crystals , 2003 .

[70]  J. González,et al.  SDW in the 2D Compound CuFeTe2 , 2001 .

[71]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[72]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[73]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[74]  J. Zaanen,et al.  Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.

[75]  V. I. Gol'danskii,et al.  A Possible Explanation for the Difference between the two Peaks in Quadropole Splitting of Mossbauer Spectrums , 1995 .

[76]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[77]  D. R. Noakes,et al.  Spin-density-wave antiferromagnetism in chromium alloys , 1994 .

[78]  J. Greedan,et al.  Oxygen-deficient SrTiO3−x, x = 0.28, 0.17, and 0.08. Crystal growth, crystal structure, magnetic, and transport properties , 1991 .

[79]  K. Ueda,et al.  Antiferromagnetic Spin Fluctuations and Superconductivity in Two-Dimensional Metals —A Possible Model for High Tc Oxides , 1990 .

[80]  B. Batlogg,et al.  Structural anomalies, oxygen ordering and superconductivity in oxygen deficient Ba2YCu3Ox , 1990 .

[81]  Kenneth A. Jackson,et al.  Anisotropic critical currents in Ba2YCu3O7 analyzed using an extended Bean model , 1989 .

[82]  P. Gougeon,et al.  Neutron scattering study of the antiferromagnetic ordering in YBa2Cu3O6+x powder and single crystal samples , 1988 .

[83]  K. Kitazawa,et al.  Determination of Oxygen Nonstoichiometry in a High-Tc Superconductor Ba2YCu3O7-δ , 1987 .

[84]  P. Anderson The Resonating Valence Bond State in La2CuO4 and Superconductivity , 1987, Science.

[85]  Philip W. Anderson,et al.  The Resonating Valence Bond State in La 2 CuO 4 and Superconductivity , 1987 .

[86]  A. Cox,et al.  Vegard's rule and volumes of formation for impurity ions , 1985 .

[87]  I. D. Brown,et al.  Bond‐valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database , 1985 .

[88]  T. Nash,et al.  Energy shift and structure of the K-absorption edge of vanadium in some vanadium compounds , 1978 .

[89]  S. Yasuda,et al.  X‐ray K emission spectra of vanadium in various oxidation states , 1978 .

[90]  J. Hesse,et al.  Model independent evaluation of overlapped Mossbauer spectra , 1974 .

[91]  G. Wertheim,et al.  Thermal Shift of a Mössbauer Gamma Ray at a Magnetic Phase Transition , 1970 .

[92]  J. Goodenough Descriptions of outer d electrons in thiospinels , 1968, Journal of Physics and Chemistry of Solids.

[93]  R. Ingalls Electric-Field Gradient Tensor in Ferrous Compounds , 1964 .

[94]  E. Makarov,et al.  On the difference in two peaks of quadropole splitting in Móssbauer spectra , 1963 .

[95]  L. Cooper,et al.  Theory of superconductivity , 1957 .

[96]  C. Gorter,et al.  Zur Thermodynamik des Supraleitenden Zustandes , 1935 .