A regularity result for the singular values of a transfer matrix and a quadratically convergent algorithm for computing its L ∞ -norm
暂无分享,去创建一个
[1] S. S. Banda,et al. Computation of the H∞ norm of a transfer function , 1990, 1990 American Control Conference.
[2] M. Steinbuch,et al. A fast algorithm to computer the H ∞ -norm of a transfer function matrix , 1990 .
[3] Stephen P. Boyd,et al. A bisection method for computing the H∞ norm of a transfer matrix and related problems , 1989, Math. Control. Signals Syst..
[4] G. Robel. On computing the infinity norm , 1989 .
[5] B. Francis,et al. A Course in H Control Theory , 1987 .
[6] D. Hinrichsen,et al. Stability radii of linear systems , 1986 .
[7] Stephen P. Boyd,et al. Subharmonic functions and performance bounds on linear time-invariant feedback systems , 1984, The 23rd IEEE Conference on Decision and Control.
[8] Y. S. Hung,et al. ANALYTIC PROPERTIES OF THE SINGULAR VALUES OF A RATIONAL MATRIX. , 1983 .
[9] G. Golub. Matrix computations , 1983 .
[10] C. Loan. A Symplectic Method for Approximating All the Eigenvalues of a Hamiltonian Matrix , 1982 .
[11] Tosio Kato. A Short Introduction to Perturbation Theory for Linear Operators , 1982 .
[12] G. Stein,et al. Multivariable feedback design: Concepts for a classical/modern synthesis , 1981 .
[13] P. Dienes,et al. The Taylor Series. , 1932 .