Optimization formulation and monotonic solution method for the Witsenhausen problem

The Witsenhausen counterexample is examined. The problem is reduced to an optimization problem over the space of quantile functions. Calculus of variation methods are applied, and necessary conditions are generated. Aspects of the structure of the problem and the solution are discussed. A numerical method generating a sequence of solution approximations with monotonically decreasing cost is constructed, based on the necessary conditions. The limit of the method satisfies the necessary conditions.

[1]  Anant Sahai,et al.  The finite-dimensional Witsenhausen counterexample , 2009, 2009 7th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks.

[2]  Yu-Chi Ho Review of the Witsenhausen problem , 2008, 2008 47th IEEE Conference on Decision and Control.

[3]  W. Gilchrist,et al.  Statistical Modelling with Quantile Functions , 2000 .

[4]  G. Dall'aglio Sugli estremi dei momenti delle funzioni di ripartizione doppia , 1956 .

[5]  E. Çinlar Probability and Stochastics , 2011 .

[6]  Yu-Chi Ho,et al.  The Witsenhausen counterexample: a hierarchical search approach for nonconvex optimization problems , 2001, IEEE Trans. Autom. Control..

[7]  Toshio Mikami,et al.  Stochastic control with fixed marginal distributions , 2006 .

[8]  Seung Hak Han,et al.  An optimization approach to the Witsenhausen counterexample , 2011, IEEE Conference on Decision and Control and European Control Conference.

[9]  R. Nelsen An Introduction to Copulas (Springer Series in Statistics) , 2006 .

[10]  Yu-Chi Ho,et al.  An ordinal optimization approach to optimal control problems , 1999, Autom..

[11]  H. Witsenhausen A Counterexample in Stochastic Optimum Control , 1968 .

[12]  B. T. Poljak,et al.  Lectures on mathematical theory of extremum problems , 1972 .

[13]  Jason R. Marden,et al.  Learning approaches to the Witsenhausen counterexample from a view of potential games , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[14]  Francesco Scandone Sulle frange d'ombra extraassiali ottenute con reticoli rettilinei in presenza di aberrazione sferica sull'asse , 1934 .

[15]  R. Cogill,et al.  A Simple Condition for the Convexity of Optimal Control over Networks with Delays , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[16]  R. Nelsen An Introduction to Copulas , 1998 .

[17]  Christos Papadimitriou,et al.  Intractable problems in control theory , 1985, 1985 24th IEEE Conference on Decision and Control.

[18]  R. Schilling Measures, Integrals and Martingales , 2006 .

[19]  Thomas Parisini,et al.  Numerical solutions to the Witsenhausen counterexample by approximating networks , 2001, IEEE Trans. Autom. Control..

[20]  Anant Sahai,et al.  A constant-factor approximately optimal solution to the Witsenhausen counterexample , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[21]  Berthold Schweizer,et al.  Probabilistic Metric Spaces , 2011 .

[22]  Sergio Verdú,et al.  Witsenhausen's counterexample: A view from optimal transport theory , 2011, IEEE Conference on Decision and Control and European Control Conference.

[23]  G. Dall’aglio,et al.  Frechet Classes: The Beginnings , 1991 .

[24]  Tamer Basar,et al.  Variations on the theme of the Witsenhausen counterexample , 2008, 2008 47th IEEE Conference on Decision and Control.

[25]  S. Mitter,et al.  Information and control: Witsenhausen revisited , 1999 .

[26]  Yu-Chi Ho,et al.  Team decision theory and information structures , 1980 .