Investigation for the effect of side plates on thermal runaway propagation characteristics in battery modules

[1]  Xuning Feng,et al.  Thermal runaway front in failure propagation of long-shape lithium-ion battery , 2022, International Journal of Heat and Mass Transfer.

[2]  Xuning Feng,et al.  Synergistic effect of insulation and liquid cooling on mitigating the thermal runaway propagation in lithium-ion battery module , 2021, Applied Thermal Engineering.

[3]  Qingsong Wang,et al.  Experimental investigation on the characteristics of thermal runaway and its propagation of large-format lithium ion batteries under overcharging and overheating conditions , 2021 .

[4]  D. Kwon,et al.  Mitigation strategies for Li-ion battery thermal runaway: A review , 2021 .

[5]  Fengwei Jiang,et al.  Characteristics of and factors influencing thermal runaway propagation in lithium-ion battery packs , 2021 .

[6]  Xuning Feng,et al.  Model and experiments to investigate thermal runaway characterization of lithium-ion batteries induced by external heating method , 2021 .

[7]  Xuanze He,et al.  Experimental study on the vertical thermal runaway propagation in cylindrical Lithium-ion batteries: effects of spacing and state of charge , 2021 .

[8]  R. Yuen,et al.  Honeycomb-inspired design of a thermal management module and its mitigation effect on thermal runaway propagation , 2021 .

[9]  Zonghai Chen,et al.  Thermal runaway mechanism of lithium-ion battery with LiNi0.8Mn0.1Co0.1O2 cathode materials , 2021, Nano Energy.

[10]  Xuning Feng,et al.  Investigation of thermal runaway propagation characteristics of lithium-ion battery modules under different trigger modes , 2021 .

[11]  Qingsong Wang,et al.  Experimental investigation on thermal runaway propagation of large format lithium ion battery modules with two cathodes , 2021, International Journal of Heat and Mass Transfer.

[12]  Qingsong Wang,et al.  Experimental study on thermal runaway and fire behaviors of large format lithium iron phosphate battery , 2021, Applied Thermal Engineering.

[13]  Qingsong Wang,et al.  Numerical modeling on thermal runaway triggered by local overheating for lithium iron phosphate battery , 2021 .

[14]  A. S. Dalkılıç,et al.  Experimental investigation of thermal performance of novel cold plate design used in a Li-ion pouch-type battery , 2021, Applied Thermal Engineering.

[15]  Minxiang Wei,et al.  Channel parameters for the temperature distribution of a battery thermal management system with liquid cooling , 2021 .

[16]  M. Berecibar,et al.  A novel liquid cooling plate concept for thermal management of lithium-ion batteries in electric vehicles , 2021 .

[17]  Xiu-xing Yin,et al.  Avoiding thermal runaway propagation of lithium-ion battery modules by using hybrid phase change material and liquid cooling , 2021 .

[18]  Jason B. Siegel,et al.  Detection of Li-ion battery failure and venting with Carbon Dioxide sensors , 2021 .

[19]  Fanny A. Pinto Delgado,et al.  A study of cell-to-cell variation of capacity in parallel-connected lithium-ion battery cells , 2021, eTransportation.

[20]  Lizhong Yang,et al.  Quantitative study on the thermal failure features of lithium iron phosphate batteries under varied heating powers , 2020 .

[21]  C. Tao,et al.  Effect of parallel connection on 18650-type lithium ion battery thermal runaway propagation and active cooling prevention with water mist , 2020 .

[22]  Xuning Feng,et al.  Experimental study on thermal runaway propagation of lithium-ion battery modules with different parallel-series hybrid connections , 2020 .

[23]  Qingsong Wang,et al.  Experimental study on thermal runaway and its propagation in the large format lithium ion battery module with two electrical connection modes , 2020 .

[24]  Rohit Bhagat,et al.  Air and PCM cooling for battery thermal management considering battery cycle life , 2020, Applied Thermal Engineering.

[25]  C. Tao,et al.  Cooling control effect of water mist on thermal runaway propagation in lithium ion battery modules , 2020 .

[26]  Xuning Feng,et al.  An Experimental Study on Preventing Thermal Runaway Propagation in Lithium-Ion Battery Module Using Aerogel and Liquid Cooling Plate Together , 2020 .

[27]  Yujie Wang,et al.  A review of key issues for control and management in battery and ultra-capacitor hybrid energy storage systems , 2020 .

[28]  Xuning Feng,et al.  Mitigating Thermal Runaway of Lithium-Ion Batteries , 2020 .

[29]  Xuning Feng,et al.  A comparative analysis on thermal runaway behavior of Li (NixCoyMnz) O2 battery with different nickel contents at cell and module level. , 2020, Journal of hazardous materials.

[30]  Kexiang Wei,et al.  Effects of different phase change material thermal management strategies on the cooling performance of the power lithium ion batteries: A review , 2019 .

[31]  Hewu Wang,et al.  Quantitative identification of emissions from abused prismatic Ni-rich lithium-ion batteries , 2019, eTransportation.

[32]  Siamak Farhad,et al.  Dual-purpose cooling plate for thermal management of prismatic lithium-ion batteries during normal operation and thermal runaway , 2019, Applied Thermal Engineering.

[33]  Y. Ran,et al.  Thermal performance of lithium ion battery pack by using cold plate , 2019, Applied Thermal Engineering.

[34]  K. Smith,et al.  Numerical investigation of thermal runaway mitigation through a passive thermal management system , 2019, Journal of Power Sources.

[35]  Xuning Feng,et al.  Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database , 2019, Applied Energy.

[36]  Yanbao Ma,et al.  A parametric study for optimization of minichannel based battery thermal management system , 2019, Applied Thermal Engineering.

[37]  Weixiong Wu,et al.  A critical review of battery thermal performance and liquid based battery thermal management , 2019, Energy Conversion and Management.

[38]  Jianqiu Li,et al.  Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components , 2018, Applied Energy.

[39]  Jintu Fan,et al.  Thermal resistance matching for thermoelectric cooling systems , 2018, Energy Conversion and Management.

[40]  Li Wang,et al.  Probing the heat sources during thermal runaway process by thermal analysis of different battery chemistries , 2018 .

[41]  Yanbao Ma,et al.  Prevent thermal runaway of lithium-ion batteries with minichannel cooling , 2017 .

[42]  Minggao Ouyang,et al.  A 3D thermal runaway propagation model for a large format lithium ion battery module , 2016 .

[43]  Qingsong Wang,et al.  Numerical study on the thermal performance of a composite board in battery thermal management system , 2016 .

[44]  Minggao Ouyang,et al.  Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry , 2014 .

[45]  Bin Wu,et al.  Examining temporal and spatial variations of internal temperature in large-format laminated battery with embedded thermocouples , 2013 .

[46]  Ahmad Pesaran,et al.  Fail-safe design for large capacity lithium-ion battery systems , 2012 .

[47]  Xuning Feng,et al.  Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition , 2021 .

[48]  Xuning Feng,et al.  Thermal runaway mechanism of lithium ion battery for electric vehicles: A review , 2018 .