DFT calculations of quadrupolar solid‐state NMR properties: Some examples in solid‐state inorganic chemistry

This article presents results of first‐principles calculations of quadrupolar parameters measured by solid‐state nuclear magnetic measurement (NMR) spectroscopy. Different computational methods based on density functional theory were used to calculate the quadrupolar parameters. Through a series of illustrations from different areas of solid state inorganic chemistry, it is shown how quadrupolar solid‐state NMR properties can be tackled by a theoretical approach and can yield structural information. © 2008 Wiley Periodicals, Inc. J Comput Chem 2008

[1]  K. Schwarz,et al.  Rare earth borocarbides: Electronic structure calculations and electric field gradients , 2000 .

[2]  R. Martin,et al.  Electronic Structure: Basic Theory and Practical Methods , 2004 .

[3]  V. Robert,et al.  Exchange interactions in oxovanadium phosphates: towards the understanding of the magnetic patterns , 2003 .

[4]  K. Mueller,et al.  High-resolution oxygen-17 NMR of solid silicates , 1991 .

[5]  B. Derighetti,et al.  NMR of 29Si and 25Mg In Mg2SiO4 with dynamic polarization technique , 1978 .

[6]  L. Frydman,et al.  Isotropic Spectra of Half-Integer Quadrupolar Spins from Bidimensional Magic-Angle Spinning NMR , 1995 .

[7]  G. Scuseria,et al.  Gaussian 03, Revision E.01. , 2007 .

[8]  R. Gautier,et al.  Portraits of some representatives of metal boride carbide and boride silicide compounds , 2006 .

[9]  M. Ben Yahia,et al.  Structural preference versus metal within the MB2C2 (M = Mg, Sc, Ca, Y, Ln) phases: the coloring problem revisited by DFT calculations. , 2005, Angewandte Chemie.

[10]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[11]  Elisabeth Sjöstedt,et al.  Efficient linearization of the augmented plane-wave method , 2001 .

[12]  K. Schwarz,et al.  Ab initio calculation of electric-field-gradient tensors of forsterite , 1996 .

[13]  E. R. Andrew,et al.  The narrowing of NMR spectra of solids by high-speed specimen rotation and the resolution of chemical shift and spin multiplet structures for solids . Pulsed NMR in Solids , 1971 .

[14]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[15]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[16]  A. Kentgens,et al.  Multiple quantum Al-27 magic-angle-spinning nuclear magnetic resonance spectroscopic study of SrAl12O19: Identification of a Al-27 resonance from a well-defined AlO5 site , 1998 .

[17]  T. Weber,et al.  Mischkristallbildung im System CuMoO4/ZnMoO4 , 2000 .

[18]  P. Herzig,et al.  Electric-field-gradient tensor and boron site-resolved {sup 11}B NMR in single-crystalline YB{sub 12} , 2007 .

[19]  D. Ansel,et al.  Cerium diboridecarbide: A new rare-earth borocarbide with the trigonal ThB2C structure , 1990 .

[20]  P. Grandinetti,et al.  Dependence of bridging oxygen 17O quadrupolar coupling parameters on Si–O distance and Si–O–Si angle , 2003 .

[21]  P. Grandinetti,et al.  Calculation of bridging oxygen 17O quadrupolar coupling parameters in alkali silicates: a combined ab initio investigation. , 2005, Solid state nuclear magnetic resonance.

[22]  J. Leciejewicz A neutron crystallographic investigation of lead molybdenum oxide, PbM0O4 , 1965 .

[23]  W. Bailey HF–DFT calculations of 14 N and 35 Cl quadrupole coupling constants on optimized molecular structures of pyridine and the monochloropyridines , 2001 .

[24]  R. Gautier,et al.  95Mo magic angle spinning NMR at high field: improved measurements and structural analysis of the quadrupole interaction in monomolybdates and isopolymolybdates. , 2005, The journal of physical chemistry. B.

[25]  Matt Probert,et al.  First-principles simulation: ideas, illustrations and the CASTEP code , 2002 .

[26]  Robert M. Hazen,et al.  Effects of temperature and pressure on the crystal structure of forsterite , 1976 .

[27]  S. Paluch,et al.  Characterization of the electronic properties of YB12, ZrB12, and LuB12 using 11B NMR and first-principles calculations , 2006 .

[28]  P. Rogl,et al.  Electronic structure of layered MB2C rare-earth borocarbide compounds , 1994 .

[29]  Francesco Mauri,et al.  All-electron magnetic response with pseudopotentials: NMR chemical shifts , 2001 .

[30]  J. Tossell Second-nearest-neighbor effects on the NMR shielding of N in P3N5 and hexagonal BN , 1999 .

[31]  L. Frydman,et al.  Dynamic Effects on the Powder Line Shapes of Half-Integer Quadrupolar Nuclei: A Solid-State NMR Study of XO4- Groups , 2002 .

[32]  The “Coloring Problem” in Solids: How It Affects Structure, Composition and Properties , 1998 .

[33]  U. Haeberlen M. Mehring: Principles of High Resolution NMR in Solids, Springer Verlag Berlin, Heidelberg, New York 1983. 342 Seiten, Preis: DM 172,— , 1983 .

[34]  Herzig,et al.  First-principles calculation of the electric field gradient of Li3N. , 1985, Physical review letters.

[35]  N. Marzari,et al.  Spin and orbital magnetic response in metals: Susceptibility and NMR shifts , 2007, 0707.1531.

[36]  S. Ashbrook,et al.  Three- and five-quantum 17O MAS NMR of forsterite Mg2SiO4 , 1999 .

[37]  J. Attfield,et al.  Layer stacking and twinning in HoB2C , 2001 .

[38]  Z. Gan Isotropic NMR Spectra of Half-Integer Quadrupolar Nuclei Using Satellite Transitions and Magic-Angle Spinning , 2000 .

[39]  E. Oldfield,et al.  High-resolution oxygen-17 NMR of solids , 1984 .

[40]  S. Ashbrook,et al.  (17)O multiple-quantum MAS NMR study of high-pressure hydrous magnesium silicates. , 2001, Journal of the American Chemical Society.

[41]  P. Fischer,et al.  Powder neutron diffraction of α-UB2C (α-UB2C-type) , 1991 .

[42]  Richard M. Martin Electronic Structure: Frontmatter , 2004 .

[43]  C. Pickard,et al.  First-principles calculations of solid-state (17)O and (29)Si NMR spectra of Mg(2)SiO(4) polymorphs. , 2007, Physical chemistry chemical physics : PCCP.

[44]  J. Besse,et al.  Redox intercalation of alkali metals into vanadyl phosphate dihydrate , 1995 .

[45]  J. Pivan,et al.  Electrosynthesis of vanadophosphate by anodic oxidation of vanadium in phosphoric acid solutions , 2002 .

[46]  S. Ashbrook,et al.  17O multiple-quantum MAS NMR study of pyroxenes , 2002 .

[47]  Israel Felner,et al.  Crystal Chemistry and Magnetism of Ternary Actinoid Boron Carbides UB1-xC1+x and U1-xMxB2C with M = Sc, Lu, and Th , 1993 .

[48]  P. Rogl,et al.  The ternary system uranium-boron-carbon , 1989 .

[49]  S. Ashbrook,et al.  High-resolution 17O MAS NMR spectroscopy of forsterite (α-Mg2SiO4), wadsleyite (β-Mg2SiO4), and ringwoodite (γ-Mg2SiO4) , 2005 .

[50]  V. Nassif,et al.  Neutron Diffraction Study of the Crystal Structure of BaMoO4: A Suitable Precursor for Metallic BaMoO3 Perovskite , 1999 .

[51]  V. Barone,et al.  Magnetic coupling in biradicals, binuclear complexes and wide-gap insulators: a survey of ab initio wave function and density functional theory approaches , 2000 .

[52]  P. A. Reynolds,et al.  X-ray determination of electron distributions in forsterite, fayalite and tephroite , 1981 .

[53]  S. Ashbrook,et al.  Solid-state 17O nuclear magnetic resonance spectroscopy without isotopic enrichment: direct detection of bridging oxygen in radiation damaged zircon. , 2004, Solid state nuclear magnetic resonance.

[54]  J. Tossell Quantum mechanical calculation of 23Na NMR shieldings in silicates and aluminosilicates , 1999 .

[55]  J. Bauer New ternary diboride carbides: ScB2C and LuB2C , 1982 .

[56]  T. Alam,et al.  Combined Ab Initio Computational and Solid-State 17O MAS NMR Studies of Crystalline P2O5. , 2003 .

[57]  R. Schurko,et al.  A solid-state NMR and ab initio study of sodium metallocenes , 2003 .

[58]  T. J. Mclarnan,et al.  The coloring problem , 1985 .

[59]  K. Lii,et al.  Hydrothermal synthesis and structural characteristics of two layered mixed-valence vanadyl phosphate hydrates Na0.50VOPO4.2.0.H2O and K0.50VOPO4.1.5.H2O , 1991 .

[60]  L. Beneš,et al.  Ion-exchange properties of alkali-metal redox-intercalated vanadyl phosphate , 2002 .

[61]  J. S. Frye High-Resolution NMR of Solids , 1990 .

[62]  P. Pyykkö Spectroscopic nuclear quadrupole moments , 2001 .

[63]  I. Farnan,et al.  Measurement of molecular motion in solids by nuclear magnetic resonance spectroscopy of half-integer quadrupole nuclei , 2001 .

[64]  É. Lippmaa,et al.  Solid-state high-resolution silicon-29 chemical shifts in silicates , 1984 .

[65]  The crystal chemistry of AM2O4 oxometallates , 2003 .

[66]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[67]  L. Kelbauskas,et al.  Determination of the orientation of 29Si chemical shift tensors using rotorsynchronized MAS NMR of single crystals: forsterite (Mg2SiO4) , 1998 .

[68]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[69]  J. Roos,et al.  Nuclear quadrupole coupling tensors of 17O in forsterite, Mg2SiO4 , 1986 .

[70]  N Vast,et al.  Atomic structure of icosahedral B4C boron carbide from a first principles analysis of NMR spectra. , 2001, Physical review letters.

[71]  A. Ramanan,et al.  A convenient hydrothermal route for the synthesis of MxVOPO4·yH2O (M=Na and K) , 1998 .

[72]  A. Jacobson,et al.  Redox intercalation reactions of vopo4•2H2O with mono- and divalent cations , 1985 .

[73]  G. Hoatson,et al.  Modelling one‐ and two‐dimensional solid‐state NMR spectra , 2002 .

[74]  J. S. King,et al.  Crystal Structure Refinement of SrMoO4, SrWO4, CaMoO4, and BaWO4 by Neutron Diffraction , 1971 .

[75]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.