Optimization of moth‐eye antireflection schemes for silicon solar cells

Nanostructured moth‐eye antireflection schemes for silicon solar cells are simulated using rigorous coupled wave analysis and compared to traditional thin film coatings. The design of the moth‐eye arrays is optimized for application to a laboratory cell (air–silicon interface) and an encapsulated cell (EVA‐silicon interface), and the optimization accounts for the solar spectrum incident on the silicon interface in both cells, and the spectral response of both types of cell. The optimized moth‐eye designs are predicted to outperform an optimized double layer thin film coating by approximately 2% for the laboratory cell and approximately 3% for the encapsulated cell. The predicted performance of the silicon moth‐eye under encapsulation is particularly remarkable as it exhibits losses of only 0·6% compared to an ideal AR surface. Copyright © 2010 John Wiley & Sons, Ltd.

[1]  Martin A. Green,et al.  Optimized antireflection coatings for high-efficiency silicon solar cells , 1991 .

[2]  M. Hutley,et al.  Reduction of Lens Reflexion by the “Moth Eye” Principle , 1973, Nature.

[3]  Kazuhiro Hane,et al.  100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask , 2001 .

[4]  M. Hutley,et al.  The Optical Properties of 'Moth Eye' Antireflection Surfaces , 1982 .

[5]  C. Bernhard,et al.  Structural and functional adaptation in a visual system - Strukturelle und funktionelle Adaptation in einem visuellen System , 1967 .

[6]  Peng Jiang,et al.  Bioinspired broadband antireflection coatings on GaSb , 2008 .

[7]  M. Green,et al.  19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells , 1998 .

[8]  Martin A. Green,et al.  24% efficient silicon solar cells , 1990, Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC).

[9]  A. Rohatgi,et al.  Belt furnace gettering and passivation of n‐web silicon for high‐efficiency screen‐printed front‐surface‐field solar cells , 2001 .

[10]  M. Yamaguchi,et al.  Numerical Analysis and Demonstration of Submicron Antireflective Textures for Crystalline Silicon Solar Cells , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[11]  R. Bird,et al.  Simple Solar Spectral Model for Direct and Diffuse Irradiance on Horizontal and Tilted Planes at the Earth's Surface for Cloudless Atmospheres , 1986 .

[12]  Stuart A. Boden,et al.  Tunable reflection minima of nanostructured antireflective surfaces , 2008 .

[13]  K. Nishioka,et al.  Antireflection subwavelength structure of silicon surface formed by wet process using catalysis of single nano-sized gold particle , 2008 .

[14]  Stuart A. Boden,et al.  Sunrise to sunset optimization of thin film antireflective coatings for encapsulated, planar silicon solar cells , 2009 .

[15]  K. Hane,et al.  Broadband antireflection gratings fabricated upon silicon substrates. , 1999, Optics letters.

[16]  Stuart A. Boden,et al.  Nanostructured biomimetic moth-eye arrays in silicon by nanoimprint lithography , 2009, NanoScience + Engineering.

[17]  S. Boden,et al.  BIO-MIMETIC NANOSTRUCTURED SURFACES FOR NEAR-ZERO REFLECTION SUNRISE TO SUNSET , 2007 .

[18]  Yoshiaki Kanamori,et al.  Wide-Angle Antireflection Effect of Subwavelength Structures for Solar Cells , 2007 .

[19]  S. Boden,et al.  Bio-Mimetic Subwavelength Surfaces for Near-Zero Reflection Sunrise to Sunset , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[20]  Alain Fave,et al.  Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching , 2006 .

[21]  S. K. Case,et al.  Optical elements with ultrahigh spatial-frequency surface corrugations. , 1983, Applied optics.

[22]  Peng Jiang,et al.  Broadband moth-eye antireflec tion coatings on silicon , 2008 .

[23]  C. Pan,et al.  Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. , 2007, Nature nanotechnology.

[24]  J. Sambles,et al.  Photonic structures in biology , 2003, Nature.

[25]  Chang-Pin Chou,et al.  Fabrication of an antireflective polymer optical film with subwavelength structures using a roll-to-roll micro-replication process , 2008 .

[26]  C. L. Cheung,et al.  Fabrication of nanopillars by nanosphere lithography , 2006 .

[27]  M. Yamaguchi,et al.  Light trapping effect of submicron surface textures in crystalline Si solar cells , 2007 .

[28]  M. Stutzmann,et al.  Black multi‐crystalline silicon solar cells , 2007 .

[29]  Martin Stutzmann,et al.  Black nonreflecting silicon surfaces for solar cells , 2006 .

[30]  P. Maddalena,et al.  Angle-dependent reflectance measurements on photovoltaic materials and solar cells , 1999 .

[31]  G. Michael Morris,et al.  Antireflection behavior of silicon subwavelength periodic structures for visible light , 1997 .

[32]  Hisao Kikuta,et al.  Fabrication of Microcone Array for Antireflection Structured Surface Using Metal Dotted Pattern , 2001 .