Progress towards ignition on the National Ignition Facility

The National Ignition Facility at Lawrence Livermore National Laboratory was formally dedicated in May 2009. The hohlraum energetics campaign with all 192 beams began shortly thereafter and ran until early December 2009. These experiments explored hohlraum-operating regimes in preparation for experiments with layered cryogenic targets. The hohlraum energetic series culminated with an experiment that irradiated an ignition scale hohlraum with 1 MJ. The results demonstrated the ability to produce a 285 eV radiation environment in an ignition scale hohlraum while meeting ignition requirements for symmetry, backscatter and hot electron production. Complementary scaling experiments indicate that with ~1.3 MJ, the capsule drive temperature will reach 300 eV, the point design temperature for the first ignition campaign. Preparation for cryo-layered implosions included installation of a variety of nuclear diagnostics, cryogenic layering target positioner, advanced optics and facility modifications needed for tritium operations and for routine operation at laser energy greater than 1.3 MJ. The first cyro-layered experiment was carried out on 29 September 2010. The main purpose of this shot was to demonstrate the ability to integrate all of the laser, target and diagnostic capability needed for a successful cryo-layered experiment. This paper discusses the ignition point design as well as findings and conclusions from the hohlraum energetics campaign carried out in 2009. It also provides a brief summary of the initial cryo-layered implosion.

Richard A. London | L. J. Atherton | Marilyn Schneider | Jay D. Salmonson | J. D. Moody | J. D. Kilkenny | D. K. Bradley | Perry M. Bell | John L. Kline | Paul T. Springer | Mordecai D. Rosen | P. W. McKenty | Edward I. Moses | Richard L. Berger | John Lindl | Paul J. Wegner | M. J. Edwards | Jeffrey A. Koch | Richard A. Sacks | Daniel H. Kalantar | Richard A. Lerche | N. Izumi | Riccardo Betti | Mark D. Wilke | C. Clay Widmayer | Jose Milovich | Robert L. Kauffman | Laurent Divol | Gary P. Grim | Steven W. Haan | Bruce A. Hammel | Denise E. Hinkel | O. S. Jones | Michael M. Marinak | S. M. Sepke | S. N. Dixit | James E. Fair | Christian Stoeckl | Otto L. Landen | Johan A. Frenje | Richard D. Petrasso | Mark Herrmann | David J. Larson | David D. Meyerhofer | Dave Braun | Robert K. Kirkwood | Brian J. MacGowan | Joseph Ralph | C. A. Haynam | T. R. Boehly | V. Yu. Glebov | D. R. Harding | J. P. Knauer | T. C. Sangster | Nelson M. Hoffman | K. A. Moreno | Abbas Nikroo | Hans W. Herrmann | Richard P. J. Town | Peter M. Celliers | Gilbert W. Collins | H. F. Robey | B. K. Spears | Stephen V. Weber | D. S. Clark | Damien G. Hicks | Pierre Michel | D. H. Munro | S. P. Hatchett | R. Tommasini | A. V. Hamza | G. A. Kyrala | Nathan Meezan | Susan Regan | R. W. Patterson | B. J. Kozioziemski | Richard E. Olson | Siegfried Glenzer | E. G. Dzenitis | T. G. Parham | T. N. Malsbury | M. J. Moran | H. L. Wilkens | Evan R. Mapoles | D. H. Schneider | P. Michel | L. Divol | J. Moody | R. Kirkwood | M. Rosen | R. London | O. Landen | B. MacGowan | E. Dewald | N. Meezan | D. Clark | P. Bell | J. Kilkenny | D. Kalantar | J. Koch | R. Tommasini | L. Atherton | S. Dixit | E. Dzenitis | C. Haynam | D. Hinkel | O. Jones | J. Milovich | C. Thomas | R. Town | S. Weber | S. Glenzer | L. Suter | J. Kline | G. Kyrala | A. Nikroo | M. Herrmann | R. Vesey | J. Knauer | D. Meyerhofer | J. Frenje | R. Petrasso | R. Betti | M. Marinak | T. Parham | P. Wegner | E. Moses | R. Patterson | M. Shaw | C. Widmayer | C. Cerjan | R. Olson | R. Kauffman | D. Larson | A. Hamza | B. Spears | S. Sepke | T. Boehly | D. Harding | P. McKenty | C. Stoeckl | S. Regan | E. Williams | D. Munro | S. Pollaine | S. Haan | B. Young | V. Glebov | N. Izumi | H. Robey | S. Hatchett | D. Wilson | P. Celliers | D. Hicks | J. Lindl | D. Bradley | A. Mackinnon | P. Springer | B. Hammel | J. Salmonson | R. Cook | D. Ho | K. Moreno | K. Peterson | J. Ralph | H. Wilkens | G. Grim | R. Berger | D. Bleuel | J. Fair | K. Fortune | S. L. Pape | T. Malsbury | E. Mapoles | M. Moran | M. Edwards | D. Braun | B. Kozioziemski | S. Batha | H. Herrmann | B. K. Young | Charles Cerjan | L. J. Suter | Edward Allen Williams | D. Schneider | Darwin Ho | Gilbert Collins | D. C. Wilson | Eduard Dewald | S. H. Batha | N. Hoffman | R. Lerche | M. Wilke | R. J. Fortner | M. Shaw | Cliff Thomas | B. M. VanWonterghem | Andrew J. Mackinnon | H. Huang | Stephen M. Pollaine | D. Callahan | S. Le Pape | R. Vesey | K. N. La Fortune | D. A. Callahan | P. A. Amednt | Darren L. Bleuel | R. C. Cook | B. Jacoby | K. Peterson | K. Widman | R. Fortner | B. Vanwonterghem | B. Jacoby | H. Huang | M. Schneider | T. Sangster | R. Sacks | K. Widman

[1]  R Tommasini,et al.  Experimental study of neutron induced background noise on gated x-ray framing cameras. , 2010, The Review of scientific instruments.

[2]  John R. Celeste,et al.  Filter-fluorescer diagnostic system for the National Ignition Facility , 2004 .

[3]  J Edwards,et al.  Generalized measurable ignition criterion for inertial confinement fusion. , 2010, Physical review letters.

[4]  Edward I. Moses,et al.  The National Ignition Facility: enabling fusion ignition for the 21st century , 2004 .

[5]  Edward I. Moses,et al.  The National Ignition Facility: Ushering in a new age for high energy density science , 2009 .

[6]  G. Morgan,et al.  Investigations into reconstruction techniques for the National Ignition Facility Neutron Imaging System , 2010 .

[7]  P. Michel,et al.  National Ignition Campaign Hohlraum energeticsa) , 2009 .

[8]  Riccardo Betti,et al.  A measurable Lawson criterion and hydro-equivalent curves for inertial confinement fusion , 2008 .

[9]  Jason C. Cooley,et al.  Progress toward fabrication of graded doped beryllium and CH capsules for the National Ignition Facilitya) , 2006 .

[10]  K. Piston,et al.  Implementation of a near backscattering imaging system on the National Ignition Facility , 2004 .

[11]  T. C. Sangster,et al.  NIF neutron bang-time detector prototype test on OMEGA , 2004 .

[12]  L. J. Atherton,et al.  Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility , 2010 .

[13]  Peter M. Celliers,et al.  Capsule implosion optimization during the indirect-drive National Ignition Campaign , 2010 .

[14]  Bassem S. El-Dasher,et al.  Diamond spheres for inertial confinement fusion , 2009 .

[15]  T. C. Sangster,et al.  Prototypes of National Ignition Facility neutron time-of-flight detectors tested on OMEGA , 2004 .

[16]  Ramon Joe Leeper,et al.  Probing high areal-density cryogenic deuterium-tritium implosions using downscattered neutron spectra measured by the magnetic recoil spectrometera) , 2010 .

[17]  P Bell,et al.  Modeling of neutron induced backgrounds in x-ray framing cameras. , 2010, The Review of scientific instruments.

[18]  Sherry L. Baker,et al.  Diamond Ablators for Inertial Confinement Fusion , 2005 .

[19]  Z. A. Ali,et al.  ICF gamma-ray reaction history diagnostics , 2010 .

[20]  J. D. Moody,et al.  Cryogenic DT and D2 targets for inertial confinement fusiona) , 2006 .

[21]  O. Landen,et al.  The physics basis for ignition using indirect-drive targets on the National Ignition Facility , 2004 .

[22]  Allen S. Mandel Comment … , 1978, British heart journal.

[23]  J. Koch,et al.  Multispectral imaging of continuum emission for determination of temperature and density profiles inside implosion plasmas , 2004 .

[24]  P. Michel,et al.  Energy transfer between laser beams crossing in ignition hohlraums , 2009 .

[25]  T. C. Sangster,et al.  Tests and calibration of NIF neutron time of flight detectors. , 2008, The Review of scientific instruments.

[26]  S. Sutton,et al.  National Ignition Facility laser performance status. , 2007, Applied optics.

[27]  Jeffrey A. Koch,et al.  CVD diamond as a high bandwidth neutron detector for inertial confinement fusion diagnostics , 2003 .

[28]  J. Lindl Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain , 1995 .

[29]  David C. Eder,et al.  Development of Nuclear Diagnostics for the National Ignition Facility (invited) , 2006 .

[30]  L J Atherton Targets for the National Ignition Campaign , 2007 .

[31]  Jay D. Salmonson,et al.  Plastic ablator ignition capsule design for the National Ignition Facility , 2010 .

[32]  M. J. Edwards,et al.  Symmetric Inertial Confinement Fusion Implosions at Ultra-High Laser Energies , 2009, Science.

[33]  J D Lindl,et al.  Three-wavelength scheme to optimize hohlraum coupling on the National Ignition Facility. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Jay D. Salmonson,et al.  Increasing robustness of indirect drive capsule designs against short wavelength hydrodynamic instabilities , 2004 .

[35]  Robert Cook,et al.  Fabrication of Graded Germanium-Doped CH Shells , 2006 .

[36]  Edward I. Moses,et al.  Ignition on the National Ignition Facility , 2007 .

[37]  Dan J. Thoma,et al.  The development and advantages of beryllium capsules for the National Ignition Facility , 1998 .

[38]  Robert Cook,et al.  Review of indirect-drive ignition design options for the National Ignition Facility , 1999 .

[39]  Neal R. Pederson,et al.  Gated x-ray detector for the National Ignition Facility , 2006 .

[40]  J D Lindl,et al.  Tuning the implosion symmetry of ICF targets via controlled crossed-beam energy transfer. , 2009, Physical review letters.

[41]  R. M. Franks,et al.  Demonstration of ignition radiation temperatures in indirect-drive inertial confinement fusion hohlraums. , 2010, Physical review letters.

[42]  John Lindl,et al.  Lawrence Livermore National Laboratory's activities to achieve ignition by x-ray drive on the National Ignition Facility , 1998 .

[43]  Robert L. Kauffman,et al.  Dante soft x-ray power diagnostic for National Ignition Facility , 2004 .

[44]  R. Kirkwood,et al.  Full-aperture backscatter measurements on the National Ignition Facility , 2004 .

[45]  J. Kilkenny,et al.  The role of the National Ignition Facility in energy production from inertial fusion , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[46]  O. Landen,et al.  Three-dimensional simulations of Nova high growth factor capsule implosion experiments , 1996 .

[47]  Richard L. Berger,et al.  Optimization of the NIF ignition point design hohlraum , 2007 .

[48]  L. J. Atherton,et al.  The experimental plan for cryogenic layered target implosions on the National Ignition Facility--The inertial confinement approach to fusion , 2011 .