Label Free Colorimetric Biosensing Using Nanoparticles

In this review article, we discuss a class of biosensors that exploit the change in the colorimetric properties of noble metal nanoparticles in response to biomolecular binding at their surface. Several sensor fabrication techniques as well as sensor configurations are discussed with an emphasis on their strengths and limitations. We conclude by presenting the future prospects and challenges for the successful transition of this technology from the laboratory to a commercial product.

[1]  Y Chen,et al.  Nanofabrication: Conventional and nonconventional methods , 2001, Electrophoresis.

[2]  Chad A. Mirkin,et al.  One-Pot Colorimetric Differentiation of Polynucleotides with Single Base Imperfections Using Gold Nanoparticle Probes , 1998 .

[3]  P. Voort,et al.  Silylation of the silica surface a review , 1996 .

[4]  Stefan Howorka,et al.  Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore , 2000, Nature Biotechnology.

[5]  Xu,et al.  "Dip-Pen" nanolithography , 1999, Science.

[6]  J. Storhoff,et al.  Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. , 1997, Science.

[7]  H. Rothuizen,et al.  Translating biomolecular recognition into nanomechanics. , 2000, Science.

[8]  C. Mirkin,et al.  Protein Nanoarrays Generated By Dip-Pen Nanolithography , 2002, Science.

[9]  Bernhard Lamprecht,et al.  Optical properties of two interacting gold nanoparticles , 2003 .

[10]  C A Mirkin,et al.  Dip-pen nanolithography: controlling surface architecture on the sub-100 nanometer length scale. , 2001, Chemphyschem : a European journal of chemical physics and physical chemistry.

[11]  Egon Matijević,et al.  Preparation of monodispersed metal particles , 1998 .

[12]  G. Whitesides,et al.  Soft Lithography. , 1998, Angewandte Chemie.

[13]  Gero Decher,et al.  Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites , 1997 .

[14]  B. Weigl,et al.  Lab-on-a-chip for drug development. , 2003, Advanced drug delivery reviews.

[15]  Hong,et al.  A nanoplotter with both parallel and serial writing capabilities , 2000, Science.

[16]  P Englebienne,et al.  Use of colloidal gold surface plasmon resonance peak shift to infer affinity constants from the interactions between protein antigens and antibodies specific for single or multiple epitopes. , 1998, The Analyst.

[17]  C. Mirkin,et al.  DNA-modified core-shell Ag/Au nanoparticles. , 2001, Journal of the American Chemical Society.

[18]  Catherine J. Murphy,et al.  Seed‐Mediated Growth Approach for Shape‐Controlled Synthesis of Spheroidal and Rod‐like Gold Nanoparticles Using a Surfactant Template , 2001 .

[19]  Hong,et al.  Multiple ink nanolithography: toward a multiple-Pen nano-plotter , 1999, Science.

[20]  Johannes Schmitt,et al.  Preparation and Optical Properties of Colloidal Gold Monolayers , 1999 .

[21]  Younan Xia,et al.  Shape‐Controlled Synthesis of Gold and Silver Nanoparticles. , 2003 .

[22]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[23]  Rahul R. Shah,et al.  Principles for Measurement of Chemical Exposure Based on Recognition-Driven Anchoring Transitions in Liquid Crystals , 2001, Science.

[24]  Marie-Paule Pileni,et al.  Detection of DNA hybridization by gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy , 2003 .

[25]  C. Haynes,et al.  Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles , 2000 .

[26]  M El Sayed,et al.  SHAPE AND SIZE DEPENDENCE OF RADIATIVE, NON-RADIATIVE AND PHOTOTHERMAL PROPERTIES OF GOLD NANOCRYSTALS , 2000 .

[27]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[28]  David R. Smith,et al.  Local Refractive Index Dependence of Plasmon Resonance Spectra from Individual Nanoparticles , 2003 .

[29]  C. M. Sotomayor Torres,et al.  Nanoimprint lithography: challenges and prospects , 2001 .

[30]  B. V. Bronk,et al.  A review of molecular recognition technologies for detection of biological threat agents. , 2000, Biosensors & bioelectronics.

[31]  D. Figeys Adapting arrays and lab‐on‐a‐chip technology for proteomics , 2002, Proteomics.

[32]  T. Brunner,et al.  Pushing the limits of lithography for IC production , 1997, International Electron Devices Meeting. IEDM Technical Digest.

[33]  Mathias Brust,et al.  Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system , 1994 .

[34]  Adam D. McFarland,et al.  Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity , 2003 .

[35]  David R. Smith,et al.  Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles , 2003 .

[36]  P. Englebienne,et al.  Rapid homogeneous immunoassay for human ferritin in the Cobas Mira using colloidal gold as the reporter reagent. , 2000, Clinical chemistry.

[37]  G. Schatz,et al.  An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium , 1987 .

[38]  G. Schatz,et al.  Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes , 1995 .

[39]  George C. Schatz,et al.  DNA-Linked Metal Nanosphere Materials: Structural Basis for the Optical Properties , 2000 .

[40]  R. Herrera-Urbina,et al.  Preparation of colloidal silver dispersions by the polyol process. Part 1—Synthesis and characterization , 1996 .

[41]  G. Whitesides,et al.  Unconventional Methods for Fabricating and Patterning Nanostructures , 1999 .

[42]  T. Thundat,et al.  Bioassay of prostate-specific antigen (PSA) using microcantilevers , 2001, Nature Biotechnology.

[43]  R. G. Freeman,et al.  Preparation and Characterization of Au Colloid Monolayers , 1995 .

[44]  Naomi J. Halas,et al.  Nanoengineering of optical resonances , 1998 .

[45]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[46]  J L West,et al.  A whole blood immunoassay using gold nanoshells. , 2003, Analytical chemistry.

[47]  Younan Xia,et al.  Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes. , 2002, Analytical chemistry.

[48]  R. G. Freeman,et al.  Submicrometer metallic barcodes. , 2001, Science.

[49]  Stephen Y. Chou,et al.  Nanoimprint Lithography and Lithographically Induced Self-Assembly , 2001 .

[50]  B M Paddle,et al.  Biosensors for chemical and biological agents of defence interest. , 1996, Biosensors & bioelectronics.

[51]  Hideaki Nakamura,et al.  Current research activity in biosensors , 2003, Analytical and bioanalytical chemistry.

[52]  George C. Schatz,et al.  Nanosphere Lithography: Effect of the External Dielectric Medium on the Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles , 1999 .

[53]  Gabi Gruetzner,et al.  Nanoimprint lithography: An alternative nanofabrication approach , 2003 .

[54]  J. Yguerabide,et al.  Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. , 1998, Analytical biochemistry.

[55]  M. Natan,et al.  Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates , 1995, Science.

[56]  M. El-Sayed,et al.  Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals , 2000 .

[57]  Younan Xia,et al.  Gold and silver nanoparticles: a class of chromophores with colors tunable in the range from 400 to 750 nm. , 2003, The Analyst.

[58]  K. Lance Kelly,et al.  Chain Length Dependence and Sensing Capabilities of the Localized Surface Plasmon Resonance of Silver Nanoparticles Chemically Modified with Alkanethiol Self-Assembled Monolayers , 2001 .

[59]  I. Rubinstein,et al.  Differential plasmon spectroscopy as a tool for monitoring molecular binding to ultrathin gold films. , 2001, Journal of the American Chemical Society.

[60]  C. J. Johnson,et al.  Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis , 2002 .

[61]  S. Schreiber,et al.  Printing proteins as microarrays for high-throughput function determination. , 2000, Science.

[62]  Harry A. Atwater,et al.  Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides , 2003, Nature materials.

[63]  Bernhard H Weigl,et al.  Microfluidic technologies in clinical diagnostics. , 2002, Clinica chimica acta; international journal of clinical chemistry.

[64]  C. Mirkin,et al.  Scanometric DNA array detection with nanoparticle probes. , 2000, Science.

[65]  M. Faraday X. The Bakerian Lecture. —Experimental relations of gold (and other metals) to light , 1857, Philosophical Transactions of the Royal Society of London.

[66]  T Kobayashi,et al.  Local plasmon sensor with gold colloid monolayers deposited upon glass substrates. , 2000, Optics letters.

[67]  C. Mirkin,et al.  Photoinduced Conversion of Silver Nanospheres to Nanoprisms , 2001, Science.

[68]  E. Matijević,et al.  Tailoring the particle size of monodispersed colloidal gold , 1999 .

[69]  Ronaldo Herrera-Urbina,et al.  Preparation of colloidal silver dispersions by the polyolprocess , 1997 .

[70]  R. V. Van Duyne,et al.  A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. , 2002, Journal of the American Chemical Society.

[71]  D. Handley,et al.  2 – Methods for Synthesis of Colloidal Gold , 1989 .

[72]  Peter J. Coassin,et al.  Miniaturized FRET assays and microfluidics: key components for ultra-high-throughput screening. , 1999, Drug discovery today.

[73]  A. Chilkoti,et al.  Ultraflat Nanosphere Lithography: A New Method to Fabricate Flat Nanostructures , 2000 .

[74]  S. Quake,et al.  Microfluidics in structural biology: smaller, faster ... better , 2003 .

[75]  J. Turkevich,et al.  Colloidal gold. Part I , 1985 .

[76]  C. Mirkin,et al.  Controlling anisotropic nanoparticle growth through plasmon excitation , 2003, Nature.

[77]  Catherine J. Murphy,et al.  CONTROLLING THE ASPECT RATIO OF INORGANIC NANORODS AND NANOWIRES , 2002 .

[78]  Ashutosh Chilkoti,et al.  A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. , 2002, Analytical chemistry.