Combining theory and experiment in lithium–sulfur batteries: Current progress and future perspectives

[1]  Mikael Olsson Struct , 2019, C# 8 Quick Syntax Reference.

[2]  J. Tu,et al.  Confining Sulfur in Integrated Composite Scaffold with Highly Porous Carbon Fibers/Vanadium Nitride Arrays for High‐Performance Lithium–Sulfur Batteries , 2018 .

[3]  O. Borodin,et al.  Layered LiTiO2 for the protection of Li2S cathodes against dissolution: mechanisms of the remarkable performance boost , 2018 .

[4]  Rui Zhang,et al.  Coralloid Carbon Fiber-Based Composite Lithium Anode for Robust Lithium Metal Batteries , 2018 .

[5]  P. Schreiner,et al.  Computational Chemistry: The Fate of Current Methods and Future Challenges. , 2018, Angewandte Chemie.

[6]  O. Anatole von Lilienfeld,et al.  Quantum Machine Learning in Chemical Compound Space , 2018 .

[7]  Qiang Sun,et al.  C3B monolayer as an anchoring material for lithium-sulfur batteries , 2018 .

[8]  Lu Li,et al.  Self-heating–induced healing of lithium dendrites , 2018, Science.

[9]  Jingping Zhang,et al.  Understanding the anchoring effect of Graphene, BN, C 2 N and C 3 N 4 monolayers for lithium-polysulfides in Li-S batteries , 2018 .

[10]  Jun Lu,et al.  Titanium nitride hollow nanospheres with strong lithium polysulfide chemisorption as sulfur hosts for advanced lithium-sulfur batteries , 2018, Nano Research.

[11]  Yayuan Liu,et al.  An Aqueous Inorganic Polymer Binder for High Performance Lithium–Sulfur Batteries with Flame-Retardant Properties , 2018, ACS central science.

[12]  Arumugam Manthiram,et al.  Rational Design of Statically and Dynamically Stable Lithium–Sulfur Batteries with High Sulfur Loading and Low Electrolyte/Sulfur Ratio , 2018, Advanced materials.

[13]  T. Zhao,et al.  Borophene and defective borophene as potential anchoring materials for lithium–sulfur batteries: a first-principles study , 2018 .

[14]  Tao Yuan,et al.  Sulfur encapsulated in thermally reduced graphite oxide as a cathode for Li–S batteries , 2018, RSC advances.

[15]  A. Mauger,et al.  Self-assembled layer-by-layer partially reduced graphene oxide–sulfur composites as lithium–sulfur battery cathodes , 2018, RSC advances.

[16]  Hong‐Jie Peng,et al.  Ion-Solvent Complexes Promote Gas Evolution from Electrolytes on a Sodium Metal Anode. , 2018, Angewandte Chemie.

[17]  Jun Lu,et al.  Lithium-Sulfur Batteries for Commercial Applications , 2018 .

[18]  K. C. Wasalathilake,et al.  Interaction between functionalized graphene and sulfur compounds in a lithium–sulfur battery – a density functional theory investigation , 2018, RSC advances.

[19]  J. Moon,et al.  Spherical Macroporous Carbon Nanotube Particles with Ultrahigh Sulfur Loading for Lithium-Sulfur Battery Cathodes. , 2018, ACS nano.

[20]  Wu Yang,et al.  3D interconnected porous carbon nanosheets/carbon nanotubes as a polysulfide reservoir for high performance lithium-sulfur batteries. , 2018, Nanoscale.

[21]  M. Shimizu,et al.  Suppressing the effect of lithium dendritic growth by the addition of magnesium bis(trifluoromethanesulfonyl)amide. , 2018, Physical chemistry chemical physics : PCCP.

[22]  Yunhui Huang,et al.  Coralline-Like N-Doped Hierarchically Porous Carbon Derived from Enteromorpha as a Host Matrix for Lithium-Sulfur Battery. , 2017, Chemistry.

[23]  Richard N. Zare,et al.  Optimizing Chemical Reactions with Deep Reinforcement Learning , 2017, ACS central science.

[24]  Sinan Li,et al.  Polysulfide intercalation in bilayer-structured graphitic C3N4: a first-principles study. , 2017, Physical chemistry chemical physics : PCCP.

[25]  Feng Li,et al.  More Reliable Lithium‐Sulfur Batteries: Status, Solutions and Prospects , 2017, Advanced materials.

[26]  Wenjun Zhang,et al.  Porous-Shell Vanadium Nitride Nanobubbles with Ultrahigh Areal Sulfur Loading for High-Capacity and Long-Life Lithium-Sulfur Batteries. , 2017, Nano letters.

[27]  Xiaodong Wu,et al.  A lithium–carbon nanotube composite for stable lithium anodes , 2017 .

[28]  Chen‐Zi Zhao,et al.  A review of solid electrolytes for safe lithium-sulfur batteries , 2017, Science China Chemistry.

[29]  Lin Liu,et al.  Free-Standing Hollow Carbon Fibers as High-Capacity Containers for Stable Lithium Metal Anodes , 2017 .

[30]  X. Lou,et al.  A Compact Nanoconfined Sulfur Cathode for High-Performance Lithium-Sulfur Batteries , 2017 .

[31]  Rui Zhang,et al.  Columnar Lithium Metal Anodes. , 2017, Angewandte Chemie.

[32]  J. Mueller,et al.  Theoretical Studies on the Charging and Discharging of Poly(acrylonitrile)‐Based Lithium‐Sulfur Batteries , 2017 .

[33]  G. Yi,et al.  Effect of lithium-trapping on nitrogen-doped graphene as an anchoring material for lithium-sulfur batteries: a density functional theory study. , 2017, Physical chemistry chemical physics : PCCP.

[34]  Hui Pan,et al.  The Fusion of Imidazolium‐Based Ionic Polymer and Carbon Nanotubes: One Type of New Heteroatom‐Doped Carbon Precursors for High‐Performance Lithium–Sulfur Batteries , 2017 .

[35]  Muratahan Aykol,et al.  Material design of high-capacity Li-rich layered-oxide electrodes: Li2MnO3 and beyond , 2017 .

[36]  Rui Zhang,et al.  An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes , 2017, Proceedings of the National Academy of Sciences.

[37]  O. Borodin,et al.  Toward in-situ protected sulfur cathodes by using lithium bromide and pre-charge , 2017 .

[38]  Tao Qian,et al.  Stabilized Lithium-Sulfur Batteries by Covalently Binding Sulfur onto the Thiol-Terminated Polymeric Matrices. , 2017, Small.

[39]  Kristin A. Persson,et al.  Discovery of Manganese-Based Solar Fuel Photoanodes via Integration of Electronic Structure Calculations, Pourbaix Stability Modeling, and High-Throughput Experiments , 2017 .

[40]  W. Lu,et al.  In situ wrapping of the cathode material in lithium-sulfur batteries , 2017, Nature Communications.

[41]  A. Manthiram,et al.  Rational Design of High-Loading Sulfur Cathodes with a Poached-Egg-Shaped Architecture for Long-Cycle Lithium–Sulfur Batteries , 2017 .

[42]  Hong‐Jie Peng,et al.  A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries. , 2017, Chemical Society reviews.

[43]  Ryosuke Jinnouchi,et al.  Predicting Catalytic Activity of Nanoparticles by a DFT-Aided Machine-Learning Algorithm. , 2017, The journal of physical chemistry letters.

[44]  François-Xavier Coudert,et al.  Predicting the Mechanical Properties of Zeolite Frameworks by Machine Learning , 2017 .

[45]  Xin-Bing Cheng,et al.  Nanodiamonds suppress the growth of lithium dendrites , 2017, Nature Communications.

[46]  P. Balbuena,et al.  Structural Dependence of the Sulfur Reduction Mechanism in Carbon-Based Cathodes for Lithium–Sulfur Batteries , 2017 .

[47]  Jingxiang Zhao,et al.  Functional group-dependent anchoring effect of titanium carbide-based MXenes for lithium-sulfur batteries: A computational study , 2017 .

[48]  Ya‐Xia Yin,et al.  Graphitized Carbon Fibers as Multifunctional 3D Current Collectors for High Areal Capacity Li Anodes , 2017, Advanced materials.

[49]  L. Nazar,et al.  A facile surface chemistry route to a stabilized lithium metal anode , 2017, Nature Energy.

[50]  Rui Zhang,et al.  Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. , 2017, Chemical reviews.

[51]  A. Manthiram,et al.  Chemistry of Sputter-Deposited Lithium Sulfide Films. , 2017, Journal of the American Chemical Society.

[52]  H. Schneider,et al.  Electrolyte decomposition and gas evolution in a lithium-sulfur cell upon long-term cycling , 2017 .

[53]  Jingxiang Zhao,et al.  How to make inert boron nitride nanosheets active for the immobilization of polysulfides for lithium-sulfur batteries: a computational study. , 2017, Physical chemistry chemical physics : PCCP.

[54]  Dongliang Chao,et al.  Borophene as Efficient Sulfur Hosts for Lithium–Sulfur Batteries: Suppressing Shuttle Effect and Improving Conductivity , 2017 .

[55]  Na Xu,et al.  Molecularly Imprinted Polymer Enables High-Efficiency Recognition and Trapping Lithium Polysulfides for Stable Lithium Sulfur Battery. , 2017, Nano letters.

[56]  T. Chen,et al.  Cerium Oxide Nanocrystal Embedded Bimodal Micromesoporous Nitrogen-Rich Carbon Nanospheres as Effective Sulfur Host for Lithium-Sulfur Batteries. , 2017, ACS nano.

[57]  Jie Xiao,et al.  Research Progress toward the Practical Applications of Lithium-Sulfur Batteries. , 2017, ACS applied materials & interfaces.

[58]  Tingzheng Hou,et al.  Lithium Bond Chemistry in Lithium-Sulfur Batteries. , 2017, Angewandte Chemie.

[59]  Tingzheng Hou,et al.  Towards stable lithium-sulfur batteries: Mechanistic insights into electrolyte decomposition on lithium metal anode , 2017 .

[60]  A. Manthiram,et al.  Rational Design of Lithium-Sulfur Battery Cathodes Based on Experimentally Determined Maximum Active Material Thickness. , 2017, Journal of the American Chemical Society.

[61]  Feng Wu,et al.  Insight on lithium polysulfide intermediates in a Li/S battery by density functional theory , 2017 .

[62]  Ke R. Yang,et al.  Mechanistic Insights into Surface Chemical Interactions between Lithium Polysulfides and Transition Metal Oxides , 2017 .

[63]  Rui Zhang,et al.  Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendrite-Free Lithium Metal Anodes. , 2017, Angewandte Chemie.

[64]  T. Tao,et al.  Anode Improvement in Rechargeable Lithium–Sulfur Batteries , 2017, Advanced materials.

[65]  Dean J. Miller,et al.  Burning lithium in CS2 for high-performing compact Li2S–graphene nanocapsules for Li–S batteries , 2017, Nature Energy.

[66]  Tingzheng Hou,et al.  A Quinonoid‐Imine‐Enriched Nanostructured Polymer Mediator for Lithium–Sulfur Batteries , 2017, Advanced materials.

[67]  Noam Bernstein,et al.  Machine learning unifies the modeling of materials and molecules , 2017, Science Advances.

[68]  Qiang Zhang,et al.  Nanostructured Metal Oxides and Sulfides for Lithium–Sulfur Batteries , 2017, Advanced materials.

[69]  Ricardo A Mata,et al.  Benchmarking Quantum Chemical Methods: Are We Heading in the Right Direction? , 2017, Angewandte Chemie.

[70]  Kristin A. Persson,et al.  Materials Genomics Screens for Adaptive Ion Transport Behavior by Redox-Switchable Microporous Polymer Membranes in Lithium–Sulfur Batteries , 2017, ACS central science.

[71]  Jun Liu,et al.  Elucidating the Solvation Structure and Dynamics of Lithium Polysulfides Resulting from Competitive Salt and Solvent Interactions , 2017 .

[72]  F. Guinea,et al.  Theory of 2D crystals: graphene and beyond. , 2017, Chemical Society reviews.

[73]  R. Ahuja,et al.  Rational Design: A High-Throughput Computational Screening and Experimental Validation Methodology for Lead-Free and Emergent Hybrid Perovskites , 2017 .

[74]  Tingzheng Hou,et al.  An Analogous Periodic Law for Strong Anchoring of Polysulfides on Polar Hosts in Lithium Sulfur Batteries: S- or Li-Binding on First-Row Transition-Metal Sulfides? , 2017 .

[75]  Chong Yan,et al.  Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries , 2017 .

[76]  Yayuan Liu,et al.  An Artificial Solid Electrolyte Interphase with High Li‐Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes , 2017, Advanced materials.

[77]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[78]  G. Yi,et al.  Understanding the anchoring behavior of titanium carbide-based MXenes depending on the functional group in LiS batteries: A density functional theory study , 2017 .

[79]  Paul R. Horn,et al.  Energy decomposition analysis in an adiabatic picture. , 2017, Physical chemistry chemical physics : PCCP.

[80]  Feng Wu,et al.  Density Functional Theory Research into the Reduction Mechanism for the Solvent/Additive in a Sodium-Ion Battery. , 2017, ChemSusChem.

[81]  Xin-Bing Cheng,et al.  Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries , 2017 .

[82]  Andrew I. Cooper,et al.  Functional materials discovery using energy–structure–function maps , 2017, Nature.

[83]  Yayuan Liu,et al.  Catalytic oxidation of Li2S on the surface of metal sulfides for Li−S batteries , 2017, Proceedings of the National Academy of Sciences.

[84]  M. G. Medvedev,et al.  Density functional theory is straying from the path toward the exact functional , 2017, Science.

[85]  X. Tao,et al.  Enhanced sulfide chemisorption using boron and oxygen dually doped multi-walled carbon nanotubes for advanced lithium–sulfur batteries , 2017 .

[86]  S. Yao,et al.  Mechanism of polysulfide immobilization on defective graphene sheets with N-substitution , 2016 .

[87]  Hong‐Jie Peng,et al.  A Cooperative Interface for Highly Efficient Lithium–Sulfur Batteries , 2016, Advanced materials.

[88]  Xin-Bing Cheng,et al.  Nanostructured energy materials for electrochemical energy conversion and storage: A review , 2016 .

[89]  Yi Cui,et al.  Designing high-energy lithium-sulfur batteries. , 2016, Chemical Society reviews.

[90]  Hong‐Jie Peng,et al.  Enhanced Electrochemical Kinetics on Conductive Polar Mediators for Lithium-Sulfur Batteries. , 2016, Angewandte Chemie.

[91]  X. Lou,et al.  Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium–sulfur batteries , 2016 .

[92]  Ryan P. Adams,et al.  Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. , 2016, Nature materials.

[93]  Chang Yu,et al.  Cobalt-embedded nitrogen-doped hollow carbon nanorods for synergistically immobilizing the discharge products in lithium–sulfur battery , 2016 .

[94]  Feng Li,et al.  Kinetically Enhanced Electrochemical Redox of Polysulfides on Polymeric Carbon Nitrides for Improved Lithium-Sulfur Batteries. , 2016, ACS applied materials & interfaces.

[95]  Li Li,et al.  Bypassing the Kohn-Sham equations with machine learning , 2016, Nature Communications.

[96]  M. Armand,et al.  Transient existence of crystalline lithium disulfide Li2S2 in a lithium-sulfur battery , 2016 .

[97]  Linda F. Nazar,et al.  Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes , 2016, Nature Energy.

[98]  Jürgen Janek,et al.  A solid future for battery development , 2016, Nature Energy.

[99]  Martin Head-Gordon,et al.  Probing non-covalent interactions with a second generation energy decomposition analysis using absolutely localized molecular orbitals. , 2016, Physical chemistry chemical physics : PCCP.

[100]  D. Prendergast,et al.  Lithium Polysulfide Radical Anions in Ether-Based Solvents , 2016 .

[101]  Kevin G. Gallagher,et al.  Sparingly Solvating Electrolytes for High Energy Density Lithium-Sulfur Batteries , 2016 .

[102]  J. Warzywoda,et al.  Confining Sulfur Species in Cathodes of Lithium-Sulfur Batteries: Insight into Nonpolar and Polar Matrix Surfaces , 2016 .

[103]  J. Janek,et al.  The critical role of lithium nitrate in the gas evolution of lithium–sulfur batteries , 2016 .

[104]  Gleb Yushin,et al.  Infiltrated Porous Polymer Sheets as Free‐Standing Flexible Lithium‐Sulfur Battery Electrodes , 2016, Advanced materials.

[105]  Feixiang Wu,et al.  Enhancing the Stability of Sulfur Cathodes in Li–S Cells via in Situ Formation of a Solid Electrolyte Layer , 2016 .

[106]  Yayuan Liu,et al.  Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. , 2016, Nature nanotechnology.

[107]  Guangmin Zhou,et al.  Understanding the interactions between lithium polysulfides and N-doped graphene using density functional theory calculations , 2016 .

[108]  Tingzheng Hou,et al.  Design Principles for Heteroatom-Doped Nanocarbon to Achieve Strong Anchoring of Polysulfides for Lithium-Sulfur Batteries. , 2016, Small.

[109]  M. Oschatz,et al.  Carbon Materials for Lithium Sulfur Batteries-Ten Critical Questions. , 2016, Chemistry.

[110]  Paul Raccuglia,et al.  Machine-learning-assisted materials discovery using failed experiments , 2016, Nature.

[111]  Jingxiang Zhao,et al.  Phosphorene as a promising anchoring material for lithium–sulfur batteries: a computational study , 2016 .

[112]  Rongming Wang,et al.  Atomic layer deposited TiO2 on a nitrogen-doped graphene/sulfur electrode for high performance lithium–sulfur batteries , 2016 .

[113]  Guangyuan Zheng,et al.  Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design , 2016, Nature Communications.

[114]  L. Nazar,et al.  Long-Life and High-Areal-Capacity Li-S Batteries Enabled by a Light-Weight Polar Host with Intrinsic Polysulfide Adsorption. , 2016, ACS nano.

[115]  Chuancheng Jia,et al.  Molecular-Scale Electronics: From Concept to Function. , 2016, Chemical reviews.

[116]  Xin-Bing Cheng,et al.  Conductive Nanostructured Scaffolds Render Low Local Current Density to Inhibit Lithium Dendrite Growth , 2016, Advanced materials.

[117]  Nongnuch Artrith,et al.  An implementation of artificial neural-network potentials for atomistic materials simulations: Performance for TiO2 , 2016 .

[118]  Dipan Kundu,et al.  A graphene-like metallic cathode host for long-life and high-loading lithium–sulfur batteries , 2016 .

[119]  P. Mukherjee,et al.  Li2S Film Formation on Lithium Anode Surface of Li-S batteries. , 2016, ACS applied materials & interfaces.

[120]  M. R. Palacín,et al.  Why do batteries fail? , 2016, Science.

[121]  Feng Li,et al.  3D Graphene‐Foam–Reduced‐Graphene‐Oxide Hybrid Nested Hierarchical Networks for High‐Performance Li–S Batteries , 2016, Advanced materials.

[122]  Yan Yu,et al.  Facile Solid‐State Growth of 3D Well‐Interconnected Nitrogen‐Rich Carbon Nanotube–Graphene Hybrid Architectures for Lithium–Sulfur Batteries , 2016 .

[123]  Feixiang Wu,et al.  Graphene-Li2S-Carbon Nanocomposite for Lithium-Sulfur Batteries. , 2016, ACS nano.

[124]  Kenville E. Hendrickson,et al.  Enhanced Li-S Batteries Using Amine-Functionalized Carbon Nanotubes in the Cathode. , 2016, ACS nano.

[125]  Zhe Yuan,et al.  Powering Lithium-Sulfur Battery Performance by Propelling Polysulfide Redox at Sulfiphilic Hosts. , 2016, Nano letters.

[126]  Mark Wild,et al.  Lithium sulfur batteries, a mechanistic review , 2015 .

[127]  Fernando A. Soto,et al.  Formation and Growth Mechanisms of Solid-Electrolyte Interphase Layers in Rechargeable Batteries , 2015 .

[128]  P. Balbuena,et al.  Reactivity at the Lithium–Metal Anode Surface of Lithium–Sulfur Batteries , 2015 .

[129]  Edward O. Pyzer-Knapp,et al.  Learning from the Harvard Clean Energy Project: The Use of Neural Networks to Accelerate Materials Discovery , 2015 .

[130]  Jiaqi Huang,et al.  Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: Progress and prospects , 2015 .

[131]  Feixiang Wu,et al.  A Hierarchical Particle–Shell Architecture for Long‐Term Cycle Stability of Li2S Cathodes , 2015, Advanced materials.

[132]  W. Lu,et al.  Graphene/Sulfur Hybrid Nanosheets from a Space‐Confined “Sauna” Reaction for High‐Performance Lithium–Sulfur Batteries , 2015, Advanced materials.

[133]  Kenville E. Hendrickson,et al.  Hybrid cathode architectures for lithium batteries based on TiS2 and sulfur , 2015 .

[134]  R. O. Jones,et al.  Density functional theory: Its origins, rise to prominence, and future , 2015 .

[135]  Pouya Partovi-Azar,et al.  Evidence for the existence of Li2S2 clusters in lithium-sulfur batteries: ab initio Raman spectroscopy simulation. , 2015, Physical chemistry chemical physics : PCCP.

[136]  L. Nazar,et al.  Radical or Not Radical: Revisiting Lithium–Sulfur Electrochemistry in Nonaqueous Electrolytes , 2015 .

[137]  Michael A. Pope,et al.  Structural Design of Cathodes for Li‐S Batteries , 2015 .

[138]  D. Prendergast,et al.  Characterization of Polysulfide Radicals Present in an Ether‐Based Electrolyte of a Lithium–Sulfur Battery During Initial Discharge Using In Situ X‐Ray Absorption Spectroscopy Experiments and First‐Principles Calculations , 2015 .

[139]  Arumugam Manthiram,et al.  Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge , 2015, Nature Communications.

[140]  Zhengyuan Tu,et al.  A Dendrite-Free Lithium Metal Battery Model Based on Nanoporous Polymer/Ceramic Composite Electrolytes and High-Energy Electrodes. , 2015, Small.

[141]  Lei Cheng,et al.  The Electrolyte Genome project: A big data approach in battery materials discovery , 2015 .

[142]  Lin Ma,et al.  Nanomaterials: Science and applications in the lithium–sulfur battery , 2015 .

[143]  Yi Cui,et al.  Understanding the Anchoring Effect of Two-Dimensional Layered Materials for Lithium-Sulfur Batteries. , 2015, Nano letters.

[144]  Lixia Yuan,et al.  Improving the electrochemical performance of a lithium–sulfur battery with a conductive polymer-coated sulfur cathode , 2015 .

[145]  Chris-Kriton Skylaris,et al.  Energy decomposition analysis approaches and their evaluation on prototypical protein-drug interaction patterns. , 2015, Chemical Society Reviews.

[146]  Arumugam Manthiram,et al.  Dual‐Confined Flexible Sulfur Cathodes Encapsulated in Nitrogen‐Doped Double‐Shelled Hollow Carbon Spheres and Wrapped with Graphene for Li–S Batteries , 2015 .

[147]  Yanming Ma,et al.  Insight into the role of Li2S2 in Li–S batteries: a first-principles study , 2015 .

[148]  Jun Lu,et al.  Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes. , 2015, Angewandte Chemie.

[149]  Tingzheng Hou,et al.  The formation of strong-couple interactions between nitrogen-doped graphene and sulfur/lithium (poly)sulfides in lithium-sulfur batteries , 2015 .

[150]  D. Prendergast,et al.  X-ray spectroscopy as a probe for lithium polysulfide radicals. , 2015, Physical chemistry chemical physics : PCCP.

[151]  Arumugam Manthiram,et al.  Lithium–Sulfur Batteries: Progress and Prospects , 2015, Advanced materials.

[152]  Yanwu Zhu,et al.  Hierarchically micro/mesoporous activated graphene with a large surface area for high sulfur loading in Li–S batteries , 2015 .

[153]  Dipan Kundu,et al.  Rational design of sulphur host materials for Li-S batteries: correlating lithium polysulphide adsorptivity and self-discharge capacity loss. , 2015, Chemical communications.

[154]  Lei Cheng,et al.  Accelerating Electrolyte Discovery for Energy Storage with High-Throughput Screening. , 2015, The journal of physical chemistry letters.

[155]  M. Armand,et al.  Unravelling the role of Li 2 S 2 in lithium–sulfur batteries: A first principles study of its energetic and electronic properties , 2014 .

[156]  L. Archer,et al.  Tethered Molecular Sorbents: Enabling Metal‐Sulfur Battery Cathodes , 2014 .

[157]  Hong‐Jie Peng,et al.  Catalytic self-limited assembly at hard templates: a mesoscale approach to graphene nanoshells for lithium-sulfur batteries. , 2014, ACS nano.

[158]  X. Lou,et al.  Enhancing lithium–sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide , 2014, Nature Communications.

[159]  Yi Cui,et al.  Strong sulfur binding with conducting Magnéli-phase Ti(n)O2(n-1) nanomaterials for improving lithium-sulfur batteries. , 2014, Nano letters.

[160]  L. Nazar,et al.  Unique behaviour of nonsolvents for polysulphides in lithium–sulphur batteries , 2014 .

[161]  Arumugam Manthiram,et al.  Rechargeable lithium-sulfur batteries. , 2014, Chemical reviews.

[162]  Rajeev S. Assary,et al.  Toward a Molecular Understanding of Energetics in Li–S Batteries Using Nonaqueous Electrolytes: A High-Level Quantum Chemical Study , 2014 .

[163]  Jun Liu,et al.  Molecular structure and stability of dissolved lithium polysulfide species. , 2014, Physical chemistry chemical physics : PCCP.

[164]  Lynden A. Archer,et al.  Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. , 2014, Journal of the American Chemical Society.

[165]  Hong‐Jie Peng,et al.  Nanoarchitectured Graphene/CNT@Porous Carbon with Extraordinary Electrical Conductivity and Interconnected Micro/Mesopores for Lithium‐Sulfur Batteries , 2014 .

[166]  Ryuichi Arakawa,et al.  Electrochemical reactions of lithium-sulfur batteries: an analytical study using the organic conversion technique. , 2014, Physical chemistry chemical physics : PCCP.

[167]  Jie Gao,et al.  Mechanistic insights into operational lithium–sulfur batteries by in situ X-ray diffraction and absorption spectroscopy , 2014 .

[168]  J. Cabana,et al.  X-ray Absorption Spectra of Dissolved Polysulfides in Lithium-Sulfur Batteries from First-Principles. , 2014, The journal of physical chemistry letters.

[169]  L. Stievano,et al.  X-ray absorption near-edge structure and nuclear magnetic resonance study of the lithium-sulfur battery and its components. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[170]  Feixiang Wu,et al.  Nanoporous Li2S and MWCNT-linked Li2S powder cathodes for lithium-sulfur and lithium-ion battery chemistries , 2014 .

[171]  Yi Cui,et al.  High-capacity Li2S–graphene oxide composite cathodes with stable cycling performance , 2014 .

[172]  Donghai Wang,et al.  Nitrogen‐Doped Mesoporous Carbon Promoted Chemical Adsorption of Sulfur and Fabrication of High‐Areal‐Capacity Sulfur Cathode with Exceptional Cycling Stability for Lithium‐Sulfur Batteries , 2014 .

[173]  Hong‐Jie Peng,et al.  Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium–sulfur batteries , 2014 .

[174]  Li-Jun Wan,et al.  Lithium-sulfur batteries: electrochemistry, materials, and prospects. , 2013, Angewandte Chemie.

[175]  Linda F. Nazar,et al.  Sulfur Speciation in Li–S Batteries Determined by Operando X-ray Absorption Spectroscopy , 2013 .

[176]  Jung Tae Lee,et al.  Sulfur‐Infiltrated Micro‐ and Mesoporous Silicon Carbide‐Derived Carbon Cathode for High‐Performance Lithium Sulfur Batteries , 2013, Advanced materials.

[177]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[178]  Arumugam Manthiram,et al.  Highly reversible lithium/dissolved polysulfide batteries with carbon nanotube electrodes. , 2013, Angewandte Chemie.

[179]  T. Chivers,et al.  Ubiquitous trisulfur radical anion: fundamentals and applications in materials science, electrochemistry, analytical chemistry and geochemistry. , 2013, Chemical Society reviews.

[180]  A. Manthiram,et al.  Challenges and prospects of lithium-sulfur batteries. , 2013, Accounts of chemical research.

[181]  Guangmin Zhou,et al.  Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries. , 2013, ACS nano.

[182]  Jung Tae Lee,et al.  High temperature stabilization of lithium–sulfur cells with carbon nanotube current collector , 2013 .

[183]  K. Artyushkova,et al.  Density functional theory calculations of XPS binding energy shift for nitrogen-containing graphene-like structures. , 2013, Chemical communications.

[184]  Guangyuan Zheng,et al.  Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. , 2013, Nano letters.

[185]  Jiaqi Huang,et al.  Graphene/single-walled carbon nanotube hybrids: one-step catalytic growth and applications for high-rate Li-S batteries. , 2012, ACS nano.

[186]  Gerbrand Ceder,et al.  Synthesis, computed stability, and crystal structure of a new family of inorganic compounds: carbonophosphates. , 2012, Journal of the American Chemical Society.

[187]  Linda F. Nazar,et al.  Understanding the Nature of Absorption/Adsorption in Nanoporous Polysulfide Sorbents for the Li–S Battery , 2012 .

[188]  Anubhav Jain,et al.  Carbonophosphates: A New Family of Cathode Materials for Li-Ion Batteries Identified Computationally , 2012 .

[189]  Nongnuch Artrith,et al.  High-dimensional neural network potentials for metal surfaces: A prototype study for copper , 2012 .

[190]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[191]  Jie Gao,et al.  Effects of Liquid Electrolytes on the Charge–Discharge Performance of Rechargeable Lithium/Sulfur Batteries: Electrochemical and in-Situ X-ray Absorption Spectroscopic Studies , 2011 .

[192]  Anubhav Jain,et al.  Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations , 2011 .

[193]  Nongnuch Artrith,et al.  High-dimensional neural-network potentials for multicomponent systems: Applications to zinc oxide , 2011 .

[194]  A. Marques,et al.  Accurate core-electron binding energy shifts from density functional theory , 2010 .

[195]  Paul W Ayers,et al.  Density-based energy decomposition analysis for intermolecular interactions with variationally determined intermediate state energies. , 2009, The Journal of chemical physics.

[196]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[197]  R. Johnston,et al.  Nanoalloys: from theory to applications of alloy clusters and nanoparticles. , 2008, Chemical reviews.

[198]  M. Armand,et al.  Building better batteries , 2008, Nature.

[199]  J. Nørskov,et al.  Recent STM, DFT and HAADF-STEM studies of sulfide-based hydrotreating catalysts: Insight into mechanistic, structural and particle size effects , 2008 .

[200]  Giulia Galli,et al.  X-ray absorption spectra of water from first principles calculations. , 2006, Physical review letters.

[201]  S. Bachrach,et al.  Effect of Micro and Bulk Solvation on the Mechanism of Nucleophilic Substitution at Sulfur in Disulfides , 2003 .

[202]  E. Levillain,et al.  Comments on the mechanism of the electrochemical reduction of sulphur in dimethylformamide , 2002 .

[203]  S. Grzesiek,et al.  Observation of through-hydrogen-bond 2hJHC' in a perdeuterated protein. , 1999, Journal of magnetic resonance.

[204]  J. Corset,et al.  Polysulfide Anions. 1. Structure and Vibrational Spectra of the S22- and S32- Anions. Influence of the Cations on Bond Length and Angle , 1999 .

[205]  H. Hagemann,et al.  Experimental Raman scattering investigation of phonon anharmonicity effects in , 1998 .

[206]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[207]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[208]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[209]  T. Chivers,et al.  Raman spectroscopic identification of the S4N- and S3- ions in blue solutions of sulfur in liquid ammonia , 1982 .

[210]  R. Clark,et al.  Characterization of sulfur radical anions in solutions of alkali polysulfides in dimethylformamide and hexamethylphosphoramide and in the solid state in ultramarine blue, green, and red , 1978 .

[211]  A. Więckowski,et al.  Colored sulfur species in EPD-solvents , 1977 .

[212]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[213]  D. Oei Sodium-sulfur system. II. Polysulfides of sodium , 1973 .

[214]  I. Drummond,et al.  Characterization of the trisulfur radical anion S3- in blue solutions of alkali polysulfides in hexamethylphosphoramide , 1972 .

[215]  Yitai Qian,et al.  Conductive Nanocrystalline Niobium Carbide as High‐Efficiency Polysulfides Tamer for Lithium‐Sulfur Batteries , 2018 .

[216]  Ruopian Fang,et al.  Polysulfide immobilization and conversion on a conductive polar MoC@MoOx material for lithium-sulfur batteries , 2018 .

[217]  Hong‐Jie Peng,et al.  Sulfurized solid electrolyte interphases with a rapid Li+ diffusion on dendrite-free Li metal anodes , 2018 .

[218]  Patrick Bonnick,et al.  Perspective—Lithium-Sulfur Batteries , 2018 .

[219]  L. Nazar,et al.  Interwoven MXene Nanosheet/Carbon‐Nanotube Composites as Li–S Cathode Hosts , 2017, Advanced materials.

[220]  Qiang Zhang,et al.  CaO‐Templated Growth of Hierarchical Porous Graphene for High‐Power Lithium–Sulfur Battery Applications , 2016 .

[221]  Ya‐Xia Yin,et al.  Three-dimensional sandwich-type graphene@microporous carbon architecture for lithium-sulfur batteries , 2016 .

[222]  O. Borodin,et al.  Lithium Iodide as a Promising Electrolyte Additive for Lithium–Sulfur Batteries: Mechanisms of Performance Enhancement , 2015, Advanced materials.

[223]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[224]  J. Cabana,et al.  Fingerprinting Lithium-Sulfur Battery Reaction Products by X-ray Absorption Spectroscopy , 2014 .

[225]  Jing Liang,et al.  A quantum-chemical study on the discharge reaction mechanism of lithium-sulfur batteries , 2013 .

[226]  J. Tübke,et al.  In-Situ Raman Investigation of Polysulfide Formation in Li-S Cells , 2013 .

[227]  Shiro Seki,et al.  Solvate Ionic Liquid Electrolyte for Li–S Batteries , 2013 .

[228]  Shizhao Xiong,et al.  Insights into Li-S Battery Cathode Capacity Fading Mechanisms: Irreversible Oxidation of Active Mass during Cycling , 2012 .

[229]  Jun-Young Jang,et al.  Raman Spectroscopic and X-ray Diffraction Studies of Sulfur Composite Electrodes during Discharge and Charge , 2012 .

[230]  Jinghua Guo,et al.  Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. , 2011, Journal of the American Chemical Society.

[231]  R. Steudel Inorganic Polysulfides S n 2− and Radical Anions S n ·− , 2003 .

[232]  M. W. Wong Quantum-Chemical Calculations of Sulfur-Rich Compounds , 2003 .

[233]  P. Dubois,et al.  Identification and characterization of lithium polysulfides in solution in liquid ammonia , 1988 .

[234]  J. Gladysz,et al.  New methodology for the introduction of sulfur into organic molecules , 1979 .

[235]  J. Kao Li2S2 and Li2S: an ab initio study , 1979 .