A low-dissipation and time-accurate method for compressible multi-component flow with variable specific heat ratios

A low-dissipation method for calculating multi-component gas dynamics flows with variable specific heat ratio that is capable of accurately simulating flows which contain both high- and low-Mach number features is proposed. The technique combines features from the double-flux multi-component model, nonlinear error-controlled WENO, adaptive TVD slope limiters, rotated Riemann solvers, and adaptive mesh refinement to obtain a method that is both robust and accurate. Success of the technique is demonstrated using an extensive series of numerical experiments including premixed deflagrations, Chapman-Jouget detonations, re-shocked Richtmyer-Meshkov instability, shock-wave and hydrogen gas column interaction, and multi-dimensional detonations. This technique is relatively straight-forward to implement using an existing compressible Navier-Stokes solver based on Godunov's method.

[1]  R. Svehla,et al.  Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures , 1962 .

[2]  H. Huynh,et al.  Accurate Monotonicity-Preserving Schemes with Runge-Kutta Time Stepping , 1997 .

[3]  Peter MacNeice,et al.  Paramesh: A Parallel Adaptive Mesh Refinement Community Toolkit , 2013 .

[4]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[5]  Soshi Kawai,et al.  A high‐resolution scheme for compressible multicomponent flows with shock waves , 2011 .

[6]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[7]  V. Gregory Weirs,et al.  A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence , 2006, J. Comput. Phys..

[8]  J. Heimerl,et al.  A comparison of transport algorithms for premixed, laminar steady state flames , 1980 .

[9]  Chongam Kim,et al.  Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows Part I Spatial discretization , 2005 .

[10]  Rémi Abgrall,et al.  An adaptive shock-capturing algorithm for solving unsteady reactive flows , 2003 .

[11]  Elaine S. Oran,et al.  A Numerical Study of a Two-Dimensional H2-O2-Ar Detonation Using a Detailed Chemical Reaction Model , 1998 .

[12]  Meng-Sing Liou,et al.  A sequel to AUSM, Part II: AUSM+-up for all speeds , 2006, J. Comput. Phys..

[13]  G. D. Byrne,et al.  VODE: a variable-coefficient ODE solver , 1989 .

[14]  V. Daru,et al.  Numerical simulation of the viscous shock tube problem by using a high resolution monotonicity-preserving scheme , 2009 .

[15]  A. Kolmogorov Dissipation of energy in the locally isotropic turbulence , 1941, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[16]  Dimitris Drikakis,et al.  On the implicit large eddy simulations of homogeneous decaying turbulence , 2007, J. Comput. Phys..

[17]  M. Pino Martín,et al.  Optimization of nonlinear error for weighted essentially non-oscillatory methods in direct numerical simulations of compressible turbulence , 2007, J. Comput. Phys..

[18]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[19]  Dong Yan,et al.  Cures for numerical shock instability in HLLC solver , 2011 .

[20]  Oleg Schilling,et al.  Effects of WENO flux reconstruction order and spatial resolution on reshocked two-dimensional Richtmyer-Meshkov instability , 2006, J. Comput. Phys..

[21]  Ralf Deiterding,et al.  Parallel adaptive simulation of multi-dimensional detonation structures , 2003 .

[22]  Alexandre Ern,et al.  Multicomponent transport algorithms , 1994 .

[23]  Steven J. Ruuth,et al.  A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods , 2002, SIAM J. Numer. Anal..

[24]  Elaine S. Oran,et al.  CHEMEQ2: A Solver for the Stiff Ordinary Differential Equations of Chemical Kinetics , 2001 .

[25]  D. Drikakis,et al.  Large eddy simulation using high-resolution and high-order methods , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[26]  T. Poinsot,et al.  Theoretical and numerical combustion , 2001 .

[27]  Theo G. Theofanous,et al.  A pseudocompressibility method for the numerical simulation of incompressible multifluid flows , 2004 .

[28]  Rémi Abgrall,et al.  Computations of compressible multifluids , 2001 .

[29]  G. Billet Improvement of convective concentration fluxes in a one step reactive flow solver , 2005 .

[30]  R. Abgrall How to Prevent Pressure Oscillations in Multicomponent Flow Calculations , 1996 .

[31]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[32]  Robert J. Kee,et al.  Toward a comprehensive chemical kinetic mechanism for the oxidation of acetylene: Comparison of model predictions with results from flame and shock tube experiments , 1982 .

[33]  Kyu Hong Kim,et al.  Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows Part II: Multi-dimensional limiting process , 2005 .

[34]  Chi-Wang Shu,et al.  Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy , 2000 .

[35]  Jeffrey A. Housman,et al.  Time-Derivative Preconditioning Methods for Multicomponent Flows—Part I: Riemann Problems , 2009 .

[36]  Domenic D'Ambrosio,et al.  Numerical Instablilities in Upwind Methods: Analysis and Cures for the “Carbuncle” Phenomenon , 2001 .

[37]  Dong-Ho Lee,et al.  A new approach of a limiting process for multi-dimensional flows , 2010, J. Comput. Phys..

[38]  Dimitris Drikakis,et al.  On entropy generation and dissipation of kinetic energy in high-resolution shock-capturing schemes , 2008, J. Comput. Phys..

[39]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[40]  Willem Hundsdorfer,et al.  RKC time-stepping for advection-diffusion-reaction problems , 2004 .

[41]  Charles K. Westbrook,et al.  Chemical kinetics of hydrocarbon oxidation in gaseous detonations , 1982 .

[42]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[43]  Kazuyoshi Takayama,et al.  Conservative Smoothing on an Adaptive Quadrilateral Grid , 1999 .

[44]  J. Ryan,et al.  A Runge-Kutta discontinuous Galerkin approach to solve reactive flows: The hyperbolic operator , 2011, J. Comput. Phys..

[45]  R. J. R. Williams,et al.  An improved reconstruction method for compressible flows with low Mach number features , 2008, J. Comput. Phys..

[46]  G. Billet,et al.  Impact of volume viscosity on a shock–hydrogen-bubble interaction , 2008 .

[47]  P. Glarborg,et al.  Chemically Reacting Flow : Theory and Practice , 2003 .

[48]  Vigor Yang,et al.  Effect of particle size on combustion of aluminum particle dust in air , 2009 .

[49]  John H. S. Lee,et al.  Dynamic Parameters of Gaseous Detonations , 1984 .