Horizontal Gene Transfer is a Significant Driver of Gene Innovation in Dinoflagellates

The dinoflagellates are an evolutionarily and ecologically important group of microbial eukaryotes. Previous work suggests that horizontal gene transfer (HGT) is an important source of gene innovation in these organisms. However, dinoflagellate genomes are notoriously large and complex, making genomic investigation of this phenomenon impractical with currently available sequencing technology. Fortunately, de novo transcriptome sequencing and assembly provides an alternative approach for investigating HGT. We sequenced the transcriptome of the dinoflagellate Alexandrium tamarense Group IV to investigate how HGT has contributed to gene innovation in this group. Our comprehensive A. tamarense Group IV gene set was compared with those of 16 other eukaryotic genomes. Ancestral gene content reconstruction of ortholog groups shows that A. tamarense Group IV has the largest number of gene families gained (314–1,563 depending on inference method) relative to all other organisms in the analysis (0–782). Phylogenomic analysis indicates that genes horizontally acquired from bacteria are a significant proportion of this gene influx, as are genes transferred from other eukaryotes either through HGT or endosymbiosis. The dinoflagellates also display curious cases of gene loss associated with mitochondrial metabolism including the entire Complex I of oxidative phosphorylation. Some of these missing genes have been functionally replaced by bacterial and eukaryotic xenologs. The transcriptome of A. tamarense Group IV lends strong support to a growing body of evidence that dinoflagellate genomes are extraordinarily impacted by HGT.

[1]  K. Jakobsen,et al.  Evolutionary Acquisition and Loss of Saxitoxin Biosynthesis in Dinoflagellates: the Second “Core” Gene, sxtG , 2013, Applied and Environmental Microbiology.

[2]  Jennifer H. Wisecaver,et al.  Evolution of saxitoxin synthesis in cyanobacteria and dinoflagellates. , 2013, Molecular biology and evolution.

[3]  R. Waller,et al.  Alveolate mitochondrial metabolic evolution: dinoflagellates force reassessment of the role of parasitism as a driver of change in apicomplexans. , 2013, Molecular biology and evolution.

[4]  A. Salamov,et al.  Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs , 2012, Nature.

[5]  Jennifer H. Wisecaver,et al.  ANALYSIS OF ALEXANDRIUM TAMARENSE (DINOPHYCEAE) GENES REVEALS THE COMPLEX EVOLUTIONARY HISTORY OF A MICROBIAL EUKARYOTE 1 , 2012, Journal of phycology.

[6]  P. Deschamps,et al.  Reevaluating the Green Contribution to Diatom Genomes , 2012, Genome biology and evolution.

[7]  E. Yang,et al.  Ancient gene paralogy may mislead inference of plastid phylogeny. , 2012, Molecular biology and evolution.

[8]  Martin Vingron,et al.  Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels , 2012, Bioinform..

[9]  Y. Charng,et al.  Recent Gene Duplication and Subfunctionalization Produced a Mitochondrial GrpE, the Nucleotide Exchange Factor of the Hsp70 Complex, Specialized in Thermotolerance to Chronic Heat Stress in Arabidopsis1[W][OA] , 2011, Plant Physiology.

[10]  Kevin J. Liu,et al.  RAxML and FastTree: Comparing Two Methods for Large-Scale Maximum Likelihood Phylogeny Estimation , 2011, PloS one.

[11]  U. Groß,et al.  Two internal type II NADH dehydrogenases of Toxoplasma gondii are both required for optimal tachyzoite growth , 2011, Molecular microbiology.

[12]  Jennifer H. Wisecaver,et al.  Dinoflagellate genome evolution. , 2011, Annual review of microbiology.

[13]  J. Stiller Experimental design and statistical rigor in phylogenomics of horizontal and endosymbiotic gene transfer , 2011, BMC Evolutionary Biology.

[14]  K. Jakobsen,et al.  Discovery of Nuclear-Encoded Genes for the Neurotoxin Saxitoxin in Dinoflagellates , 2011, PloS one.

[15]  U. Gophna,et al.  The complexity hypothesis revisited: connectivity rather than function constitutes a barrier to horizontal gene transfer. , 2011, Molecular biology and evolution.

[16]  Oliver Eulenstein,et al.  Genome-scale phylogenetics: inferring the plant tree of life from 18,896 gene trees. , 2011, Systematic biology.

[17]  C. Gobler,et al.  Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics , 2011, Proceedings of the National Academy of Sciences.

[18]  Kellen L. Olszewski,et al.  Central carbon metabolism of Plasmodium parasites. , 2011, Molecular and biochemical parasitology.

[19]  E. Rocha,et al.  Horizontal Transfer, Not Duplication, Drives the Expansion of Protein Families in Prokaryotes , 2011, PLoS genetics.

[20]  A. Weber,et al.  Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in euglenids , 2011, BMC Evolutionary Biology.

[21]  J. Gill,et al.  Spliced leader–based metatranscriptomic analyses lead to recognition of hidden genomic features in dinoflagellates , 2010, Proceedings of the National Academy of Sciences.

[22]  L. Katz,et al.  Broadly sampled multigene analyses yield a well-resolved eukaryotic tree of life. , 2010, Systematic biology.

[23]  Miklós Csuös,et al.  Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood , 2010, Bioinform..

[24]  B. Lang,et al.  Phylogenomic evidence for separate acquisition of plastids in cryptophytes, haptophytes, and stramenopiles. , 2010, Molecular biology and evolution.

[25]  Jennifer H. Wisecaver,et al.  Transcriptome analysis reveals nuclear-encoded proteins for the maintenance of temporary plastids in the dinoflagellate Dinophysis acuminata , 2010, BMC Genomics.

[26]  Corinne Da Silva,et al.  The Ectocarpus genome and the independent evolution of multicellularity in brown algae , 2010, Nature.

[27]  A. Horák,et al.  A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids , 2010, Proceedings of the National Academy of Sciences.

[28]  D. Anderson,et al.  Transcriptome Profiling of a Toxic Dinoflagellate Reveals a Gene-Rich Protist and a Potential Impact on Gene Expression Due to Bacterial Presence , 2010, PloS one.

[29]  Paramvir S. Dehal,et al.  FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments , 2010, PloS one.

[30]  Y. Inagaki,et al.  A phylogenetic mosaic plastid proteome and unusual plastid-targeting signals in the green-colored dinoflagellate Lepidodinium chlorophorum , 2010, BMC Evolutionary Biology.

[31]  M. Gardner,et al.  The Alveolate Perkinsus marinus: Biological Insights from EST Gene Discovery , 2010, BMC Genomics.

[32]  Yubo Hou,et al.  Distinct Gene Number-Genome Size Relationships for Eukaryotes and Non-Eukaryotes: Gene Content Estimation for Dinoflagellate Genomes , 2009, PloS one.

[33]  J. Andersson Gene transfer and diversification of microbial eukaryotes. , 2009, Annual review of microbiology.

[34]  Adam P. Arkin,et al.  FastTree: Computing Large Minimum Evolution Trees with Profiles instead of a Distance Matrix , 2009, Molecular biology and evolution.

[35]  A. Salamov,et al.  Green Evolution and Dynamic Adaptations Revealed by Genomes of the Marine Picoeukaryotes Micromonas , 2009, Science.

[36]  R. Waller,et al.  Dinoflagellate mitochondrial genomes: stretching the rules of molecular biology , 2009, BioEssays : news and reviews in molecular, cellular and developmental biology.

[37]  J. Archibald The Puzzle of Plastid Evolution , 2009, Current Biology.

[38]  Thomas Schiex,et al.  FrameDP: sensitive peptide detection on noisy matured sequences , 2009, Bioinform..

[39]  Leszek Rychlewski,et al.  The Phaeodactylum genome reveals the evolutionary history of diatom genomes , 2008, Nature.

[40]  Jan Marienhagen,et al.  Metabolic Function of Corynebacterium glutamicum Aminotransferases AlaT and AvtA and Impact on l-Valine Production , 2008, Applied and Environmental Microbiology.

[41]  K. Tan,et al.  Biochemical characterization of a mitochondrial-like organelle from Blastocystis sp. subtype 7. , 2008, Microbiology.

[42]  A. Place,et al.  From Stop to Start: Tandem Gene Arrangement, Copy Number and Trans-Splicing Sites in the Dinoflagellate Amphidinium carterae , 2008, PloS one.

[43]  J. Palmer,et al.  Horizontal gene transfer in eukaryotic evolution , 2008, Nature Reviews Genetics.

[44]  E. Birney,et al.  Velvet: algorithms for de novo short read assembly using de Bruijn graphs. , 2008, Genome research.

[45]  O. Hoegh‐Guldberg,et al.  A photosynthetic alveolate closely related to apicomplexan parasites , 2008, Nature.

[46]  Haiming Wang,et al.  ToxoDB: an integrated Toxoplasma gondii database resource , 2007, Nucleic Acids Res..

[47]  U. Brandt,et al.  The three families of respiratory NADH dehydrogenases. , 2008, Results and problems in cell differentiation.

[48]  Debashish Bhattacharya,et al.  PhyloSort: a user-friendly phylogenetic sorting tool and its application to estimating the cyanobacterial contribution to the nuclear genome of Chlamydomonas , 2008, BMC Evolutionary Biology.

[49]  D. Anderson,et al.  Species boundaries and global biogeography of the Alexandrium tamarense complex (Dinophyceae) 1 , 2007 .

[50]  D. Hibbett,et al.  Horizontal Transfer of a Nitrate Assimilation Gene Cluster and Ecological Transitions in Fungi: A Phylogenetic Study , 2007, PloS one.

[51]  Shelby L. Bidwell,et al.  Genome Sequence of Babesia bovis and Comparative Analysis of Apicomplexan Hemoprotozoa , 2007, PLoS pathogens.

[52]  Debashish Bhattacharya,et al.  Horizontal gene transfer in chromalveolates , 2007, BMC Evolutionary Biology.

[53]  Kamran Shalchian-Tabrizi,et al.  Phylogenomics Reshuffles the Eukaryotic Supergroups , 2007, PloS one.

[54]  Nicholas H. Putnam,et al.  The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation , 2007, Proceedings of the National Academy of Sciences.

[55]  R. Guigó,et al.  Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia , 2006, Nature.

[56]  Jan-Fang Cheng,et al.  Chimeric plastid proteome in the Florida "red tide" dinoflagellate Karenia brevis. , 2006, Molecular biology and evolution.

[57]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[58]  Debashish Bhattacharya,et al.  Phylogenomic analysis identifies red algal genes of endosymbiotic origin in the chromalveolates. , 2006, Molecular biology and evolution.

[59]  J. Hastings,et al.  NOVEL AND RAPIDLY DIVERGING INTERGENIC SEQUENCES BETWEEN TANDEM REPEATS OF THE LUCIFERASE GENES IN SEVEN DINOFLAGELLATE SPECIES 1 , 2006 .

[60]  Shuai Weng,et al.  Tetrahymena Genome Database (TGD): a new genomic resource for Tetrahymena thermophila research , 2005, Nucleic Acids Res..

[61]  D. Anderson,et al.  Global transcriptional profiling of the toxic dinoflagellate Alexandrium fundyense using Massively Parallel Signature Sequencing , 2006, BMC Genomics.

[62]  M. Huynen,et al.  Horizontal gene transfer from Bacteria to rumen Ciliates indicates adaptation to their anaerobic, carbohydrates-rich environment , 2006, BMC Genomics.

[63]  C. Pál,et al.  Adaptive evolution of bacterial metabolic networks by horizontal gene transfer , 2005, Nature Genetics.

[64]  S. Adl,et al.  The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists , 2005, The Journal of eukaryotic microbiology.

[65]  Hervé Philippe,et al.  An empirical assessment of long-branch attraction artefacts in deep eukaryotic phylogenomics. , 2005, Systematic biology.

[66]  Todd C. LaJeunesse,et al.  SYMBIODINIUM (PYRRHOPHYTA) GENOME SIZES (DNA CONTENT) ARE SMALLEST AMONG DINOFLAGELLATES 1 , 2005 .

[67]  Neil Hall,et al.  Genome of the Host-Cell Transforming Parasite Theileria annulata Compared with T. parva , 2005, Science.

[68]  M. Soares,et al.  Insights into a dinoflagellate genome through expressed sequence tag analysis , 2005, BMC Genomics.

[69]  David L. Steffen,et al.  The genome of the social amoeba Dictyostelium discoideum , 2005, Nature.

[70]  K. Katoh,et al.  MAFFT version 5: improvement in accuracy of multiple sequence alignment , 2005, Nucleic acids research.

[71]  M. Teixeira,et al.  New Insights into Type II NAD(P)H:Quinone Oxidoreductases , 2004, Microbiology and Molecular Biology Reviews.

[72]  Gregory A. Buck,et al.  The genome of Cryptosporidium hominis , 2004, Nature.

[73]  D. Anderson,et al.  Dinoflagellates: a remarkable evolutionary experiment. , 2004, American journal of botany.

[74]  Nicholas H. Putnam,et al.  The Genome of the Diatom Thalassiosira Pseudonana: Ecology, Evolution, and Metabolism , 2004, Science.

[75]  Ping Xu,et al.  Complete Genome Sequence of the Apicomplexan, Cryptosporidium parvum , 2004, Science.

[76]  Jessica C Kissinger,et al.  Gene transfer in the evolution of parasite nucleotide biosynthesis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[77]  C. Delwiche,et al.  Dinoflagellate expressed sequence tag data indicate massive transfer of chloroplast genes to the nuclear genome. , 2004, Protist.

[78]  M. Soares,et al.  Migration of the Plastid Genome to the Nucleus in a Peridinin Dinoflagellate , 2004, Current Biology.

[79]  A. S. Raghavendra,et al.  Beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation. , 2003, Trends in plant science.

[80]  S. Carroll,et al.  Conflicting phylogenetic signals at the base of the metazoan tree , 2003, Evolution & development.

[81]  J. Andersson,et al.  Phylogenetic Analyses of Diplomonad Genes Reveal Frequent Lateral Gene Transfers Affecting Eukaryotes , 2003, Current Biology.

[82]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[83]  P. Keeling,et al.  Re-examining Alveolate Evolution Using Multiple Protein Molecular Phylogenies , 2002, The Journal of eukaryotic microbiology.

[84]  I. Møller PLANT MITOCHONDRIA AND OXIDATIVE STRESS: Electron Transport, NADPH Turnover, and Metabolism of Reactive Oxygen Species. , 2001, Annual review of plant physiology and plant molecular biology.

[85]  W. Martin,et al.  Pyruvate : NADP+ oxidoreductase from the mitochondrion of Euglena gracilis and from the apicomplexan Cryptosporidium parvum: a biochemical relic linking pyruvate metabolism in mitochondriate and amitochondriate protists. , 2001, Molecular biology and evolution.

[86]  Douwe Molenaar,et al.  Another Unusual Type of Citric Acid Cycle Enzyme inHelicobacter pylori: the Malate:Quinone Oxidoreductase , 2000, Journal of bacteriology.

[87]  H. Ochman,et al.  Lateral gene transfer and the nature of bacterial innovation , 2000, Nature.

[88]  Hidetoshi Shimodaira,et al.  Multiple Comparisons of Log-Likelihoods with Applications to Phylogenetic Inference , 1999, Molecular Biology and Evolution.

[89]  J. Lake,et al.  Horizontal gene transfer among genomes: the complexity hypothesis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[90]  S. Douglas,et al.  Plastid evolution: origins, diversity, trends. , 1998, Current opinion in genetics & development.

[91]  W. Doolittle You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. , 1998, Trends in genetics : TIG.

[92]  D. Stoecker,et al.  Conceptual models of mixotrophy in planktonic protists and some ecological and evolutionary implications , 1998 .

[93]  R. Herrmann,et al.  Gene transfer from organelles to the nucleus: how much, what happens, and Why? , 1998, Plant physiology.

[94]  R. Davis,et al.  In vivo detection and imaging of phosphatidylserine expression during programmed cell death. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[95]  J. Graves,et al.  Phylogenetic analysis of Perkinsus based on actin gene sequences. , 1997, The Journal of parasitology.

[96]  Akiyasu C. Yoshizawa,et al.  KAAS: an automatic genome annotation and pathway reconstruction server , 2007, Environmental health perspectives.

[97]  D. Morse,et al.  A nuclear-encoded form II RuBisCO in dinoflagellates. , 1995, Science.

[98]  Y. Takada,et al.  Differential expression in Escherichia coli of the Vibrio sp. strain ABE-1 icdI and icdII genes encoding structurally different isocitrate dehydrogenase isozymes , 1995, Journal of bacteriology.