Reconstruction of the early Universe as a convex optimization problem

We show that the deterministic past history of the Universe can be uniquely reconstructed from knowledge of the present mass density field, the latter being inferred from the three-dimensional distribution of luminous matter, assumed to be tracing the distribution of dark matter up to a known bias. Reconstruction ceases to be unique below those scales – a few Mpc – where multistreaming becomes significant. Above 6 h−1 Mpc we propose and implement an effective Monge–Ampere–Kantorovich method of unique reconstruction. At such scales the Zel'dovich approximation is well satisfied and reconstruction becomes an instance of optimal mass transportation, a problem which goes back to Monge. After discretization into N point masses one obtains an assignment problem that can be handled by effective algorithms with not more than O(N3) time complexity and reasonable CPU time requirements. Testing against N-body cosmological simulations gives over 60 per cent of exactly reconstructed points. We apply several interrelated tools from optimization theory that were not used in cosmological reconstruction before, such as the Monge–Ampere equation, its relation to the mass transportation problem, the Kantorovich duality and the auction algorithm for optimal assignment. A self-contained discussion of relevant notions and techniques is provided.

[1]  Lagrangian dynamics in non-flat universes and non-linear gravitational evolution , 1994, astro-ph/9406016.

[2]  D. Ter Haar,et al.  Mechanics: course of theoretical physics: L.D. Landau and E.M. Lifshitz. 3rd Edit., Vol. 1, 169+xxvii, pp. 58 illus., 6×912in., Pergamon Press, Oxford, 1976. Price, $12.50. , 1977 .

[3]  P. Peebles,et al.  The Large-Scale Structure of the Universe , 1980 .

[4]  J. Manfroid Nearby galaxies Catalog -- R. B. Tully , 1988 .

[5]  Y. Brenier Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .

[6]  Rupert A. C. Croft,et al.  Reconstruction of cosmological density and velocity fields in the Lagrangian Zel'dovich approximation , 1997 .

[7]  Mario Milman,et al.  Monge Ampère equation : applications to geometry and optimization : NSF-CBMS Conference on the Monge Ampère Equation : Applications to Geometry and Optimization, July 9-13, 1997, Florida Atlantic University , 1999 .

[8]  B. Sathyaprakash,et al.  Filaments and Pancakes in the IRAS 1.2 Jy Redshift Catalog , 1998, astro-ph/9805265.

[9]  E. Branchini,et al.  Peculiar velocity reconstruction with the fast action method: tests on mock redshift surveys , 2001, astro-ph/0110618.

[10]  Phillip James Edwin Peebles,et al.  Tracing galaxy orbits back in time , 1989 .

[11]  U. Frisch,et al.  A reconstruction of the initial conditions of the Universe by optimal mass transportation , 2001, Nature.

[12]  Y. Zel’dovich,et al.  The large scale structure of the universe I. General properties. One-and two-dimensional models , 1982 .

[13]  Helen Valentine,et al.  The inverse redshift-space operator: reconstructing cosmological density and velocity fields , 1999 .

[14]  On the least action principle in cosmology , 1999, astro-ph/9908167.

[15]  Michel Balinski,et al.  A competitive (dual) simplex method for the assignment problem , 1986, Math. Program..

[16]  Zhang,et al.  Dynamic scaling of growing interfaces. , 1986, Physical review letters.

[17]  Avishai Dekel,et al.  Tracing large-scale fluctuations back in time , 1992 .

[18]  W. Saunders,et al.  Reconstructing the IRAS Point Source Catalog Redshift Survey with a generalized PIZA , 2000 .

[19]  É. Goursat,et al.  Cours d'analyse mathématíque , 1919 .

[20]  Sergei F. Shandarin,et al.  The large-scale structure of the universe: Turbulence, intermittency, structures in a self-gravitating medium , 1989 .

[21]  T. Buchert,et al.  Lagrangian theory of gravitational instability of Friedman-Lemaitre cosmologies and the 'Zel'dovich approximation' , 1992 .

[22]  W. Gangbo,et al.  The geometry of optimal transportation , 1996 .

[23]  Dimitri P. Bertsekas,et al.  A new algorithm for the assignment problem , 1981, Math. Program..

[24]  F. Bouchet,et al.  Precollapse Scale Invariance in Gravitational Instability , 1991 .

[25]  N. Tomizawa,et al.  On some techniques useful for solution of transportation network problems , 1971, Networks.

[26]  U. Frisch,et al.  Kicked Burgers turbulence , 1999, Journal of Fluid Mechanics.

[27]  Simulating Our Cosmological Neighborhood: Mock Catalogs for Velocity Analysis , 1995, astro-ph/9509066.

[28]  U. Frisch,et al.  Back to the primordial Universe by a Monge-Ampère-Kantorovich optimization scheme , 2003, astro-ph/0301641.

[29]  A. Yahil,et al.  A generalized Zel'dovich approximation to gravitational instability , 1993 .

[30]  Jeremiah P. Ostriker,et al.  Precision Cosmology? Not Just Yet . . . , 2003, Science.

[31]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[32]  A. Whiting The Least-Action Principle: Theory of Cosmological Solutions and the Radial Velocity Action , 2000, astro-ph/0002378.

[33]  F. Pearce,et al.  Hydra: An Adaptive--Mesh Implementation of PPPM--SPH , 1994 .

[34]  M. Gramann,et al.  An improved reconstruction method for cosmological density fields , 1993 .

[35]  P. Peebles,et al.  THE GRAVITATIONAL INSTABILITY PICTURE AND THE FORMATION OF THE LOCAL GROUP , 1990 .

[36]  Vijay K. Narayanan,et al.  Recovering the Primordial Density Fluctuations: A Comparison of Methods , 1998, astro-ph/9806255.

[37]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[38]  D. Weinberg,et al.  Reconstructing primordial density fluctuations – I. Method , 1992 .

[39]  R. Burkard,et al.  Assignment and Matching Problems: Solution Methods with FORTRAN-Programs , 1980 .

[40]  G. Loeper The Inverse Problem for the Euler-Poisson system in Cosmology , 2003, math/0306430.

[41]  Asymptotic behavior of a planar perturbation in a three dimensional expanding Universe , 2002, astro-ph/0203435.

[42]  S. Colombi,et al.  Large scale structure of the universe and cosmological perturbation theory , 2001, astro-ph/0112551.

[43]  Edward J. Wollack,et al.  First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.

[44]  Edmund Bertschinger,et al.  Recovering the full velocity and density fields from large-scale redshift-distance samples , 1989 .

[45]  J. Jeans Problems of Cosmology and Stellar Dynamics , 1920 .

[46]  RECONSTRUCTION OF COSMOLOGICAL INITIAL CONDITIONS FROM GALAXY REDSHIFT CATALOGUES , 1999, astro-ph/9902119.

[47]  J. Binney,et al.  The principle of least action and clustering in cosmology , 1994, astro-ph/9405050.

[48]  Michel Hénon,et al.  A mechanical model for the transportation problem , 2002, ArXiv.

[49]  Dimitri P. Bertsekas,et al.  Auction algorithms for network flow problems: A tutorial introduction , 1992, Comput. Optim. Appl..

[50]  Eulerian perturbation theory in non-flat universes: second-order approximation , 1994, astro-ph/9411066.

[51]  Non-Linear Approximations to Gravitational Instability: A Comparison in the Quasi-Linear Regime , 1994, astro-ph/9402065.

[52]  É. Goursat Leçons sur l'intégration des équations aux dérivées partielles du second ordre à deux variables indépendantes: , 1896 .

[53]  A. Pogorelov The Minkowski multidimensional problem , 1978 .

[54]  T. Buchert,et al.  Lagrangian theory of gravitational instability of Friedman–Lemaître cosmologies – second-order approach: an improved model for non-linear clustering , 1993 .

[55]  A. I. Saichev,et al.  The large-scale structure of the Universe in the frame of the model equation of non-linear diffusion , 1989 .

[56]  Willett,et al.  TIGER : Interrogation d'une table relationnelle par extension de critères , 2010 .

[57]  Sandra M. Faber,et al.  Potential, velocity and density fields from sparse and noisy redshift distance samples: Method , 1990 .

[58]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[59]  Vijay K. Narayanan,et al.  Reconstruction Analysis of Galaxy Redshift Surveys: A Hybrid Reconstruction Method , 1998, astro-ph/9806238.

[60]  A. Szalay,et al.  Large-scale structure: entering the precision era , 2000 .

[61]  Peter Coles,et al.  Cosmology: The Origin and Evolution of Cosmic Structure , 1995 .

[62]  Yanyan Li,et al.  An extension to a theorem of Jörgens, Calabi, and Pogorelov , 2003 .