Reconstruction of the early Universe as a convex optimization problem
暂无分享,去创建一个
[1] Lagrangian dynamics in non-flat universes and non-linear gravitational evolution , 1994, astro-ph/9406016.
[2] D. Ter Haar,et al. Mechanics: course of theoretical physics: L.D. Landau and E.M. Lifshitz. 3rd Edit., Vol. 1, 169+xxvii, pp. 58 illus., 6×912in., Pergamon Press, Oxford, 1976. Price, $12.50. , 1977 .
[3] P. Peebles,et al. The Large-Scale Structure of the Universe , 1980 .
[4] J. Manfroid. Nearby galaxies Catalog -- R. B. Tully , 1988 .
[5] Y. Brenier. Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .
[6] Rupert A. C. Croft,et al. Reconstruction of cosmological density and velocity fields in the Lagrangian Zel'dovich approximation , 1997 .
[7] Mario Milman,et al. Monge Ampère equation : applications to geometry and optimization : NSF-CBMS Conference on the Monge Ampère Equation : Applications to Geometry and Optimization, July 9-13, 1997, Florida Atlantic University , 1999 .
[8] B. Sathyaprakash,et al. Filaments and Pancakes in the IRAS 1.2 Jy Redshift Catalog , 1998, astro-ph/9805265.
[9] E. Branchini,et al. Peculiar velocity reconstruction with the fast action method: tests on mock redshift surveys , 2001, astro-ph/0110618.
[10] Phillip James Edwin Peebles,et al. Tracing galaxy orbits back in time , 1989 .
[11] U. Frisch,et al. A reconstruction of the initial conditions of the Universe by optimal mass transportation , 2001, Nature.
[12] Y. Zel’dovich,et al. The large scale structure of the universe I. General properties. One-and two-dimensional models , 1982 .
[13] Helen Valentine,et al. The inverse redshift-space operator: reconstructing cosmological density and velocity fields , 1999 .
[14] On the least action principle in cosmology , 1999, astro-ph/9908167.
[15] Michel Balinski,et al. A competitive (dual) simplex method for the assignment problem , 1986, Math. Program..
[16] Zhang,et al. Dynamic scaling of growing interfaces. , 1986, Physical review letters.
[17] Avishai Dekel,et al. Tracing large-scale fluctuations back in time , 1992 .
[18] W. Saunders,et al. Reconstructing the IRAS Point Source Catalog Redshift Survey with a generalized PIZA , 2000 .
[19] É. Goursat,et al. Cours d'analyse mathématíque , 1919 .
[20] Sergei F. Shandarin,et al. The large-scale structure of the universe: Turbulence, intermittency, structures in a self-gravitating medium , 1989 .
[21] T. Buchert,et al. Lagrangian theory of gravitational instability of Friedman-Lemaitre cosmologies and the 'Zel'dovich approximation' , 1992 .
[22] W. Gangbo,et al. The geometry of optimal transportation , 1996 .
[23] Dimitri P. Bertsekas,et al. A new algorithm for the assignment problem , 1981, Math. Program..
[24] F. Bouchet,et al. Precollapse Scale Invariance in Gravitational Instability , 1991 .
[25] N. Tomizawa,et al. On some techniques useful for solution of transportation network problems , 1971, Networks.
[26] U. Frisch,et al. Kicked Burgers turbulence , 1999, Journal of Fluid Mechanics.
[27] Simulating Our Cosmological Neighborhood: Mock Catalogs for Velocity Analysis , 1995, astro-ph/9509066.
[28] U. Frisch,et al. Back to the primordial Universe by a Monge-Ampère-Kantorovich optimization scheme , 2003, astro-ph/0301641.
[29] A. Yahil,et al. A generalized Zel'dovich approximation to gravitational instability , 1993 .
[30] Jeremiah P. Ostriker,et al. Precision Cosmology? Not Just Yet . . . , 2003, Science.
[31] Yann Brenier,et al. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.
[32] A. Whiting. The Least-Action Principle: Theory of Cosmological Solutions and the Radial Velocity Action , 2000, astro-ph/0002378.
[33] F. Pearce,et al. Hydra: An Adaptive--Mesh Implementation of PPPM--SPH , 1994 .
[34] M. Gramann,et al. An improved reconstruction method for cosmological density fields , 1993 .
[35] P. Peebles,et al. THE GRAVITATIONAL INSTABILITY PICTURE AND THE FORMATION OF THE LOCAL GROUP , 1990 .
[36] Vijay K. Narayanan,et al. Recovering the Primordial Density Fluctuations: A Comparison of Methods , 1998, astro-ph/9806255.
[37] Kenneth Steiglitz,et al. Combinatorial Optimization: Algorithms and Complexity , 1981 .
[38] D. Weinberg,et al. Reconstructing primordial density fluctuations – I. Method , 1992 .
[39] R. Burkard,et al. Assignment and Matching Problems: Solution Methods with FORTRAN-Programs , 1980 .
[40] G. Loeper. The Inverse Problem for the Euler-Poisson system in Cosmology , 2003, math/0306430.
[41] Asymptotic behavior of a planar perturbation in a three dimensional expanding Universe , 2002, astro-ph/0203435.
[42] S. Colombi,et al. Large scale structure of the universe and cosmological perturbation theory , 2001, astro-ph/0112551.
[43] Edward J. Wollack,et al. First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.
[44] Edmund Bertschinger,et al. Recovering the full velocity and density fields from large-scale redshift-distance samples , 1989 .
[45] J. Jeans. Problems of Cosmology and Stellar Dynamics , 1920 .
[46] RECONSTRUCTION OF COSMOLOGICAL INITIAL CONDITIONS FROM GALAXY REDSHIFT CATALOGUES , 1999, astro-ph/9902119.
[47] J. Binney,et al. The principle of least action and clustering in cosmology , 1994, astro-ph/9405050.
[48] Michel Hénon,et al. A mechanical model for the transportation problem , 2002, ArXiv.
[49] Dimitri P. Bertsekas,et al. Auction algorithms for network flow problems: A tutorial introduction , 1992, Comput. Optim. Appl..
[50] Eulerian perturbation theory in non-flat universes: second-order approximation , 1994, astro-ph/9411066.
[51] Non-Linear Approximations to Gravitational Instability: A Comparison in the Quasi-Linear Regime , 1994, astro-ph/9402065.
[52] É. Goursat. Leçons sur l'intégration des équations aux dérivées partielles du second ordre à deux variables indépendantes: , 1896 .
[53] A. Pogorelov. The Minkowski multidimensional problem , 1978 .
[54] T. Buchert,et al. Lagrangian theory of gravitational instability of Friedman–Lemaître cosmologies – second-order approach: an improved model for non-linear clustering , 1993 .
[55] A. I. Saichev,et al. The large-scale structure of the Universe in the frame of the model equation of non-linear diffusion , 1989 .
[56] Willett,et al. TIGER : Interrogation d'une table relationnelle par extension de critères , 2010 .
[57] Sandra M. Faber,et al. Potential, velocity and density fields from sparse and noisy redshift distance samples: Method , 1990 .
[58] H. Kuhn. The Hungarian method for the assignment problem , 1955 .
[59] Vijay K. Narayanan,et al. Reconstruction Analysis of Galaxy Redshift Surveys: A Hybrid Reconstruction Method , 1998, astro-ph/9806238.
[60] A. Szalay,et al. Large-scale structure: entering the precision era , 2000 .
[61] Peter Coles,et al. Cosmology: The Origin and Evolution of Cosmic Structure , 1995 .
[62] Yanyan Li,et al. An extension to a theorem of Jörgens, Calabi, and Pogorelov , 2003 .