A pH-responsive genetic sensor for the dynamic regulation of D-xylonic acid accumulation in Escherichia coli

[1]  W. Chung,et al.  Discovering a novel d-xylonate-responsive promoter: the PyjhI-driven genetic switch towards better 1,2,4-butanetriol production , 2019, Applied Microbiology and Biotechnology.

[2]  P. Silver,et al.  Synthetic cassettes for pH-mediated sensing, counting and containment , 2019, bioRxiv.

[3]  W. Chung,et al.  Improved cell growth and biosynthesis of glycolic acid by overexpression of membrane-bound pyridine nucleotide transhydrogenase , 2019, Journal of Industrial Microbiology & Biotechnology.

[4]  Peng Xu,et al.  Production of chemicals using dynamic control of metabolic fluxes. , 2018, Current opinion in biotechnology.

[5]  W. Chung,et al.  Everyone loves an underdog: metabolic engineering of the xylose oxidative pathway in recombinant microorganisms , 2018, Applied Microbiology and Biotechnology.

[6]  K. Jung,et al.  Bacterial transmembrane signalling systems and their engineering for biosensing , 2018, Open Biology.

[7]  P. Ouyang,et al.  d-1,2,4-Butanetriol production from renewable biomass with optimization of synthetic pathway in engineered Escherichia coli. , 2018, Bioresource technology.

[8]  W. Chung,et al.  Engineering Escherichia coli for glycolic acid production from D-xylose through the Dahms pathway and glyoxylate bypass , 2018, Applied Microbiology and Biotechnology.

[9]  M. Penttilä,et al.  Production of ethylene glycol or glycolic acid from D-xylose in Saccharomyces cerevisiae , 2017, Applied Microbiology and Biotechnology.

[10]  M. Chang,et al.  Engineering a riboswitch-based genetic platform for the self-directed evolution of acid-tolerant phenotypes , 2017, Nature Communications.

[11]  Tae Seok Moon,et al.  Enabling complex genetic circuits to respond to extrinsic environmental signals , 2017, Biotechnology and bioengineering.

[12]  W. Chung,et al.  Enhanced yield of ethylene glycol production from d-xylose by pathway optimization in Escherichia coli. , 2017, Enzyme and microbial technology.

[13]  Chankyu Park,et al.  Bacterial Responses to Glyoxal and Methylglyoxal: Reactive Electrophilic Species , 2017, International journal of molecular sciences.

[14]  D. Wei,et al.  Production of xylonic acid by Klebsiella pneumoniae , 2016, Applied Microbiology and Biotechnology.

[15]  Fabian Rudolf,et al.  Identification and Characterisation of a pH-stable GFP , 2016, Scientific Reports.

[16]  Jay D. Keasling,et al.  Engineering of synthetic, stress-responsive yeast promoters , 2016, Nucleic acids research.

[17]  Sang Yup Lee,et al.  One-step fermentative production of poly(lactate-co-glycolate) from carbohydrates in Escherichia coli , 2016, Nature Biotechnology.

[18]  W. Chung,et al.  Identification of aldehyde reductase catalyzing the terminal step for conversion of xylose to butanetriol in engineered Escherichia coli , 2015, Bioprocess and Biosystems Engineering.

[19]  Huaiwei Liu,et al.  Autonomous production of 1,4-butanediol via a de novo biosynthesis pathway in engineered Escherichia coli. , 2015, Metabolic engineering.

[20]  J. Biteen,et al.  Single‐molecule tracking in live Vibrio cholerae reveals that ToxR recruits the membrane‐bound virulence regulator TcpP to the toxT promoter , 2015, Molecular microbiology.

[21]  Jan Marienhagen,et al.  Engineering of Corynebacterium glutamicum for minimized carbon loss during utilization of D-xylose containing substrates. , 2014, Journal of biotechnology.

[22]  S. White,et al.  Topology, dimerization, and stability of the single-span membrane protein CadC. , 2014, Journal of molecular biology.

[23]  W. Chung,et al.  Biosynthesis of ethylene glycol in Escherichia coli , 2013, Applied Microbiology and Biotechnology.

[24]  Kirsten Jung,et al.  Deactivation of the E. coli pH stress sensor CadC by cadaverine. , 2012, Journal of molecular biology.

[25]  W. Chung,et al.  High yield production of D-xylonic acid from D-xylose using engineered Escherichia coli. , 2012, Bioresource technology.

[26]  Peng Xu,et al.  ePathBrick: a synthetic biology platform for engineering metabolic pathways in E. coli. , 2012, ACS synthetic biology.

[27]  K. Jung,et al.  Crystal structure of the sensory domain of Escherichia coli CadC, a member of the ToxR‐like protein family , 2011, Protein science : a publication of the Protein Society.

[28]  Kirsten Jung,et al.  New Insights into the Signaling Mechanism of the pH-responsive, Membrane-integrated Transcriptional Activator CadC of Escherichia coli* , 2011, The Journal of Biological Chemistry.

[29]  F M Gírio,et al.  Hemicelluloses for fuel ethanol: A review. , 2010, Bioresource technology.

[30]  E. Westhof,et al.  A pH-responsive riboregulator. , 2009, Genes & development.

[31]  Kirsten Jung,et al.  Induction kinetics of a conditional pH stress response system in Escherichia coli. , 2009, Journal of molecular biology.

[32]  D. G. Gibson,et al.  Enzymatic assembly of DNA molecules up to several hundred kilobases , 2009, Nature Methods.

[33]  J. D. de Winde,et al.  Establishment of Oxidative d-Xylose Metabolism in Pseudomonas putida S12 , 2009, Applied and Environmental Microbiology.

[34]  Kirsten Jung,et al.  The membrane‐integrated transcriptional activator CadC of Escherichia coli senses lysine indirectly via the interaction with the lysine permease LysP , 2008, Molecular microbiology.

[35]  M. Penttilä,et al.  Identification in the mould Hypocrea jecorina of a gene encoding an NADP+: d-xylose dehydrogenase , 2007, FEMS microbiology letters.

[36]  S. Normark,et al.  Transcriptional analysis of the acid-inducible asr gene in enterobacteria. , 2004, Research in microbiology.

[37]  M. Neely,et al.  Kinetics of expression of the Escherichia coli cad operon as a function of pH and lysine , 1996, Journal of bacteriology.

[38]  M. Neely,et al.  Altered pH lysine signalling mutants of cadC, a gene encoding a membrane‐bound transcriptional activator of the Escherichia coli cadBA operon , 1994, Molecular microbiology.

[39]  M. Neely,et al.  Roles of LysP and CadC in mediating the lysine requirement for acid induction of the Escherichia coli cad operon , 1994, Journal of bacteriology.

[40]  T. Wong,et al.  The DeLey-Doudoroff Pathway of Galactose Metabolism in Azotobacter vinelandii , 1994, Applied and environmental microbiology.

[41]  Hiroshi Kobayashi,et al.  Escherichia coli cad operon functions as a supplier of carbon dioxide , 1994, Molecular microbiology.

[42]  J. Slonczewski,et al.  Identification of elements involved in transcriptional regulation of the Escherichia coli cad operon by external pH , 1992, Journal of bacteriology.

[43]  R. Miller,et al.  One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[44]  L. Baldomà,et al.  Involvement of lactaldehyde dehydrogenase in several metabolic pathways of Escherichia coli K12. , 1987, The Journal of biological chemistry.

[45]  T. N. González,et al.  Mu d-directed lacZ fusions regulated by low pH in Escherichia coli , 1987, Journal of bacteriology.

[46]  R. Cooper,et al.  D‐galactonate utilisation by enteric bacteria The catabolic pathway in Escherichia coli , 1977, FEBS letters.

[47]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[48]  A. Dahms 3-Deoxy-D-pentulosonic acid aldolase and its role in a new pathway of D-xylose degradation. , 1974, Biochemical and biophysical research communications.

[49]  D. Fraenkel,et al.  Glucose and Gluconate Metabolism in an Escherichia coli Mutant Lacking Phosphoglucose Isomerase , 1967, Journal of bacteriology.

[50]  R. Weimberg Pentose oxidation by Pseudomonas fragi. , 1961, The Journal of biological chemistry.

[51]  Yin Li,et al.  Synthetic pathway optimization for improved 1,2,4-butanetriol production , 2015, Journal of Industrial Microbiology & Biotechnology.

[52]  W. Chung,et al.  Direct bioconversion of d-xylose to 1,2,4-butanetriol in an engineered Escherichia coli , 2014 .

[53]  T. Terwilliger,et al.  Engineering and characterization of a superfolder green fluorescent protein , 2006, Nature Biotechnology.