Addendum to 'Electrical impedance tomography'

We present some additional references and clarifying statements to the topical review 'Electrical impedance tomography' (Borcea L 2002 Inverse Problems 18 R99–136).

[1]  Juan Antonio Barceló,et al.  Stability of the Inverse Conductivity Problem in the Plane for Less Regular Conductivities , 2001 .

[2]  M. Hanke,et al.  Numerical implementation of two noniterative methods for locating inclusions by impedance tomography , 2000 .

[3]  Samuli Siltanen,et al.  Numerical method for finding the convex hull of an inclusion in conductivity from boundary measurements , 2000 .

[4]  R. Novikov,et al.  Multidimensional inverse spectral problem for the equation —Δψ + (v(x) — Eu(x))ψ = 0 , 1988 .

[5]  Masaru Ikehata,et al.  Reconstruction of an obstacle from the scattering amplitude at a fixed frequency , 1998 .

[6]  A. Kirsch,et al.  A simple method for solving inverse scattering problems in the resonance region , 1996 .

[7]  Martin Brühl,et al.  Explicit Characterization of Inclusions in Electrical Impedance Tomography , 2001, SIAM J. Math. Anal..

[8]  Masaru Ikehata,et al.  Reconstruction of the support function for inclusion from boundary measurements , 2000 .

[9]  Masaru Ikehata,et al.  RECONSTRUCTION OF THE SHAPE OF THE INCLUSION BY BOUNDARY MEASUREMENTS , 1998 .

[10]  R G Novikov,et al.  The $ \bar\partial$-equation in the multidimensional inverse scattering problem , 1987 .

[11]  Andreas Kirsch,et al.  Characterization of the shape of a scattering obstacle using the spectral data of the far field operator , 1998 .

[12]  Niculae Mandache,et al.  Exponential instability in an inverse problem for the Schrodinger equation , 2001 .