Carbon nanotube field effect transistor aptasensors for estrogen detection in liquids

The authors demonstrate a small molecule 17 β-estradiol (E2) sensor based on aptamer functionalized carbon nanotube network film field effect transistors (CNT FETs). The real time current response for the 35-mer E2 aptamer functionalized CNT FET shows a clear increase in current over the range of 50 nM to 1.6 μM of E2. The E2 response using a longer 75-mer version of the aptamer functionalized CNT FETs, where the aptamer/E2 binding occurs beyond the Debye length, shows no obvious evidence of sensing. The CNT FET sensing platform has been fabricated via a simple surfactant free solution processing route, compatible with further carbon nanotube functionalization to develop a versatile sensing platform. The CNT FET aptasensors are able to perform real time monitoring of E2 levels for selective and quantitative detection of E2 in liquids.

[1]  K. Yoo,et al.  Carbon nanotube-based biosensor for detection hepatitis B , 2009 .

[2]  Jadranka Travas-Sejdic,et al.  Label-free electrochemical aptasensor for femtomolar detection of 17β-estradiol. , 2015, Biosensors & bioelectronics.

[3]  Ke-Jing Huang,et al.  Label-free aptamer sensor for 17β-estradiol based on vanadium disulfide nanoflowers and Au nanoparticles , 2014 .

[4]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[5]  J. Bartrolí,et al.  Real time protein recognition in a liquid-gated carbon nanotube field-effect transistor modified with aptamers. , 2012, Nanoscale.

[6]  Hanchang Shi,et al.  Fluorescence resonance energy transfer based aptasensor for the sensitive and selective detection of 17β-estradiol using a quantum dot-bioconjugate as a nano-bioprobe , 2014 .

[7]  April Z Gu,et al.  Aptamer-based optical biosensor for rapid and sensitive detection of 17β-estradiol in water samples. , 2012, Environmental science & technology.

[8]  Y. Ohno,et al.  Label-free biosensors based on aptamer-modified graphene field-effect transistors. , 2010, Journal of the American Chemical Society.

[9]  Itamar Willner,et al.  Electronic aptamer-based sensors. , 2007, Angewandte Chemie.

[10]  Guohua Zhao,et al.  A femtomolar level and highly selective 17β-estradiol photoelectrochemical aptasensor applied in environmental water samples analysis. , 2014, Environmental science & technology.

[11]  Sang Jun Sim,et al.  Ultrasensitive carbon nanotube-based biosensors using antibody-binding fragments. , 2008, Analytical biochemistry.

[12]  M. Gu,et al.  Electrochemical detection of 17β-estradiol using DNA aptamer immobilized gold electrode chip , 2007 .

[13]  Omar A Alsager,et al.  Small molecule detection in solution via the size contraction response of aptamer functionalized nanoparticles. , 2014, Biosensors & bioelectronics.

[14]  Ciara K O'Sullivan,et al.  Aptamer conformational switch as sensitive electrochemical biosensor for potassium ion recognition. , 2006, Chemical communications.

[15]  Kenzo Maehashi,et al.  Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. , 2007, Analytical chemistry.

[16]  Omotayo A. Arotiba,et al.  Electrochemical Aptasensor for Endocrine Disrupting 17β-Estradiol Based on a Poly(3,4-ethylenedioxylthiopene)-Gold Nanocomposite Platform , 2010, Sensors.

[17]  J. Hodgkiss,et al.  Ultrasensitive colorimetric detection of 17β-estradiol: the effect of shortening DNA aptamer sequences. , 2015, Analytical chemistry.

[18]  Guonan Chen,et al.  Label-free aptamer-based electrochemical impedance biosensor for 17β-estradiol. , 2012, The Analyst.

[19]  Fred J Sigworth,et al.  Importance of the Debye screening length on nanowire field effect transistor sensors. , 2007, Nano letters.

[20]  S. Jayasena Aptamers: an emerging class of molecules that rival antibodies in diagnostics. , 1999, Clinical chemistry.

[21]  M. Mascini,et al.  Aptamer-based biosensors for the detection of HIV-1 Tat protein. , 2005, Bioelectrochemistry.

[22]  Guohua Zhao,et al.  A Fetomolar Level 17β-estradiol Electrochemical Aptasensor Constructed On Hierachical Dendritic Gold Modified Boron-Doped Diamond Electrode , 2014 .

[23]  D. Yoon,et al.  Aptamer-functionalized nano-pattern based on carbon nanotube for sensitive, selective protein detection , 2012 .

[24]  C. Soeller,et al.  Conducting polymers for electrochemical DNA sensing. , 2009, Biomaterials.

[25]  S. Okamoto,et al.  Horizontally Aligned Carbon Nanotubes on a Quartz Substrate for Chemical and Biological Sensing , 2012 .

[26]  T. Hianik,et al.  Influence of ionic strength, pH and aptamer configuration for binding affinity to thrombin. , 2007, Bioelectrochemistry.

[27]  H. Dai,et al.  Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. , 2001, Journal of the American Chemical Society.

[28]  Jeong-O Lee,et al.  Aptamers as molecular recognition elements for electrical nanobiosensors , 2007, Analytical and bioanalytical chemistry.

[29]  U. Walschus,et al.  Immobilization of Oligonucleotides for Biochemical Sensing by Self-Assembled Monolayers: Thiol-Organic Bonding on Gold and Silanization on Silica Surfaces , 2005 .

[30]  Shuming Yang,et al.  Highly sensitive colorimetric detection of 17β-estradiol using split DNA aptamers immobilized on unmodified gold nanoparticles , 2014, Scientific Reports.

[31]  Wilfred Chen,et al.  Single-walled carbon nanotubes chemiresistor aptasensors for small molecules: picomolar level detection of adenosine triphosphate. , 2011, Chemical communications.

[32]  Craig D. Adams,et al.  Endocrine disrupting compounds removal from wastewater, a new challenge , 2006 .

[33]  A. Grayson,et al.  Biologically directed environmental monitoring, fate, and transport of estrogenic endocrine disrupting compounds in water: A review. , 2006, Chemosphere.

[34]  Cees Dekker,et al.  Identifying the mechanism of biosensing with carbon nanotube transistors. , 2008, Nano letters.

[35]  Sang-June Choi,et al.  The methods of identification, analysis, and removal of endocrine disrupting compounds (EDCs) in water. , 2009, Journal of hazardous materials.

[36]  Jeong-O Lee,et al.  Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements. , 2005, Journal of the American Chemical Society.

[37]  Seunghun Hong,et al.  Aptamer sandwich-based carbon nanotube sensors for single-carbon-atomic-resolution detection of non-polar small molecular species. , 2011, Lab on a chip.

[38]  R. Cheung,et al.  Positioning of carbon nanotubes using soft-lithography for electronics applications , 2005 .

[39]  Ke-Jing Huang,et al.  Label-free and sensitive electrochemiluminescence aptasensor for the determination of 17β-estradiol based on a competitive assay with cDNA amplification , 2014 .

[40]  J. Riu,et al.  Immediate detection of living bacteria at ultralow concentrations using a carbon nanotube based potentiometric aptasensor. , 2009, Angewandte Chemie.