Spectral Conditions for the Negative Imaginary Property of Transfer Function Matrices

Abstract This paper derives some necessary and sufficient conditions for linear time invariant systems to have the negative imaginary property in both the single-input-single-output as well as the multi-input-multi-output cases. The conditions for a system to be negative imaginary are described in terms of spectral conditions obtained for a given transfer function matrix.

[1]  R. Shorten,et al.  On spectral conditions for positive realness of transfer function matrices , 2008, 2008 American Control Conference.

[2]  J. Wen Time domain and frequency domain conditions for strict positive realness , 1988 .

[3]  Ian R. Petersen,et al.  Stability analysis of positive feedback interconnections of linear negative imaginary systems , 2009, 2009 American Control Conference.

[4]  Ian R. Petersen,et al.  On lossless negative imaginary systems , 2009, 2009 7th Asian Control Conference.

[5]  Robert Shorten,et al.  On common quadratic Lyapunov functions for pairs of stable LTI systems whose system matrices are in companion form , 2003, IEEE Trans. Autom. Control..

[6]  Ian R. Petersen,et al.  Finite frequency negative imaginary systems , 2010, ACC.

[7]  Brian D. O. Anderson,et al.  Network Analysis and Synthesis: A Modern Systems Theory Approach , 2006 .

[8]  Ian R. Petersen,et al.  A modified positive-real type stability condition , 2007, 2007 European Control Conference (ECC).

[9]  Robert Shorten,et al.  A Note on Spectral Conditions for Positive Realness of Transfer Function Matrices , 2008, IEEE Transactions on Automatic Control.

[10]  Zhaojun Bai,et al.  Eigenvalue-based characterization and test for positive realness of scalar transfer functions , 2000, IEEE Trans. Autom. Control..

[11]  Thomas Kailath,et al.  Linear Systems , 1980 .

[12]  Ian R. Petersen,et al.  Stability Robustness of a Feedback Interconnection of Systems With Negative Imaginary Frequency Response , 2008, IEEE Transactions on Automatic Control.

[13]  Robert Shorten,et al.  Spectral conditions for positive realness of single-input-single-output systems , 2004, IEEE Transactions on Automatic Control.

[14]  Bernhard Maschke,et al.  Dissipative Systems Analysis and Control , 2000 .

[15]  Alexander Lanzon,et al.  Feedback Control of Negative-Imaginary Systems , 2010, IEEE Control Systems.

[16]  Yishao Zhou,et al.  Eigenvalue-based algorithms for testing positive realness of SISO systems , 2003, IEEE Trans. Autom. Control..