Stable p-type conduction from Sb-decorated head-to-head basal plane inversion domain boundaries in ZnO nanowires.

We report that Sb-decorated head-to-head (H-H) basal plane inversion domain boundaries (b-IDBs) lead to stable p-type conduction in Sb-doped ZnO nanowires (NWs) due to Sb and O codoping. Aberration-corrected Z-contrast scanning transmission electron microscopy shows that all of the Sb in the NWs is incorporated into H-H b-IDBs just under the (0001) NW growth surfaces and the (0001) bottom facets of interior voids. Density functional theory calculations show that the extra basal plane of O per H-H b-IDB makes them electron acceptors. NWs containing these defects exhibited stable p-type behavior in a single NW FET over 18 months. This new mechanism for p-type conduction in ZnO offers the potential of ZnO NW based p-n homojunction devices.

[1]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[2]  J. Reid Debye–Waller factors of zinc-blende-structure materials – a lattice dynamical comparison , 1983 .

[3]  C. Rossouw,et al.  Imaging elastic strains in high-angle annular dark field scanning transmission electron microscopy , 1993 .

[4]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[5]  Russell F. Loane,et al.  Annular dark-field imaging: Resolution and thickness effects , 1993 .

[6]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[7]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[8]  W. Lee,et al.  Inversion domain boundaries in ZnO ceramics , 1996 .

[9]  H. Rose,et al.  Conditions and reasons for incoherent imaging in STEM , 1996 .

[10]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[11]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[12]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[13]  A. Lichtenstein,et al.  First-principles calculations of electronic structure and spectra of strongly correlated systems: the LDA+U method , 1997 .

[14]  Takafumi Yao,et al.  Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire: Growth and characterization , 1998 .

[15]  D. Look,et al.  Residual Native Shallow Donor in ZnO , 1999 .

[16]  Tomoji Kawai,et al.  p-Type Electrical Conduction in ZnO Thin Films by Ga and N Codoping , 1999 .

[17]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[18]  G. Ceder,et al.  First-principles study of native point defects in ZnO , 2000 .

[19]  Hiroshi Katayama-Yoshida,et al.  Physics and control of valence states in ZnO by codoping method , 2001 .

[20]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[21]  T. Walther,et al.  Structure and Chemistry of Basal‐Plane Inversion Boundaries in Antimony Oxide‐Doped Zinc Oxide , 2001 .

[22]  High-Resolution HAADF STEM of Inversion Boundaries in Sb2O3-Doped Zinc Oxide , 2002, Microscopy and Microanalysis.

[23]  Toru Aoki,et al.  p‐Type ZnO Layer Formation by Excimer Laser Doping , 2002 .

[24]  C. H. Park,et al.  Doping by large-size-mismatched impurities: the microscopic origin of arsenic- or antimony-doped p-type zinc oxide. , 2004, Physical review letters.

[25]  M. Kawasaki,et al.  Quantitative high-resolution HAADF-STEM analysis of inversion boundaries in Sb(2)O(3)-doped zinc oxide. , 2004, Ultramicroscopy.

[26]  Charles M Lieber,et al.  Semiconductor nanowire heterostructures , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[27]  Q. Wan,et al.  Electronic transport through individual ZnO nanowires , 2004 .

[28]  F. Zhuge,et al.  p-type conduction in N–Al co-doped ZnO thin films , 2004 .

[29]  H. Morkoç,et al.  A COMPREHENSIVE REVIEW OF ZNO MATERIALS AND DEVICES , 2005 .

[30]  L. J. Mandalapu,et al.  High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy , 2005 .

[31]  Luigi Colombo,et al.  Effect of nitrogen on band alignment in HfSiON gate dielectrics , 2005 .

[32]  Peidong Yang,et al.  ZnO nanowire transistors. , 2005, The journal of physical chemistry. B.

[33]  Claudia Felser,et al.  Powder magnetoresistance of Co2Cr0.6Fe0.4Al/ Al2O3 powder compacts , 2006 .

[34]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[35]  W. Jo,et al.  Characterization of pyramidal inversion boundaries in Sb2O3-doped ZnO by using electron back-scattered diffraction (EBSD). , 2007, Acta crystallographica. Section A, Foundations of crystallography.

[36]  Cesare Soci,et al.  Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition. , 2007, Nano letters.

[37]  I. Pasternak,et al.  Photoluminescence study of p -type ZnO:Sb prepared by thermal oxidation of the Zn-Sb starting material , 2007 .

[38]  J. Pekola,et al.  Information entropic superconducting microcooler , 2007, 0704.0845.

[39]  W. Mader,et al.  Inversion domain boundaries in ZnO with additions of Fe2O3 studied by high-resolution ADF imaging. , 2007, Micron.

[40]  D. Look Quantitative analysis of surface donors in ZnO , 2007 .

[41]  Hyun-Yong Lee,et al.  Growth of Polarity-Controlled ZnO Films on (0001) Al2O3 , 2008 .

[42]  Chengliang Sun,et al.  Magnetoelectric coupling in CoFe₂O₄/SrRuO₃/Pb(Zr[sub 0.52]Ti[sub 0.48])O₃ heteroepitaxial thin film structure , 2008 .

[43]  S. X. Dou,et al.  Coexistence of ferromagnetism and cluster glass state in superconducting ferromagnet RuSr2Eu1.5Ce0.5Cu2O10−δ , 2009 .

[44]  S. Torbruegge,et al.  Stabilization of Zinc-Terminated ZnO(0001) by a Modified Surface Stoichiometry , 2009 .

[45]  Zhong Lin Wang,et al.  Piezoelectric nanogenerator using p-type ZnO nanowire arrays. , 2009, Nano letters.

[46]  W. Mader,et al.  Displacement field measurement of metal sub-lattice in inversion domains of indium-doped zinc oxide , 2010 .

[47]  Jr-hau He,et al.  Surface effects on optical and electrical properties of ZnO nanostructures , 2010 .

[48]  Susanne Stemmer,et al.  Position averaged convergent beam electron diffraction: theory and applications. , 2010, Ultramicroscopy.

[49]  Jianlin Liu,et al.  Synthesis and characterization of Ag-doped p-type ZnO nanowires , 2011 .

[50]  Nicholas J. Wright,et al.  Determining ferroelectric polarity at the nanoscale , 2011 .

[51]  Miin-Jang Chen,et al.  Stable p-type ZnO films grown by atomic layer deposition on GaAs substrates and treated by post-deposition rapid thermal annealing , 2011 .

[52]  Mingui Sun,et al.  A novel resonant inductive magnetic coupling wireless charger with TiO2 compound interlayer , 2011 .

[53]  L. Chernyak,et al.  Electrically pumped waveguide lasing from ZnO nanowires. , 2011, Nature nanotechnology.

[54]  T. Rao,et al.  Realization of stable p-type ZnO thin films using Li-N dual acceptors , 2011 .

[55]  S. Su,et al.  Structural, optical and electronic properties of P doped p-type ZnO thin film , 2011 .

[56]  N. Dasgupta,et al.  A codoping route to realize low resistive and stable p-type conduction in (Li, Ni):ZnO thin films grown by pulsed laser deposition. , 2011, ACS applied materials & interfaces.

[57]  Comprehensive study of the p-type conductivity formation in radio frequency magnetron sputtered arsenic-doped ZnO film , 2011 .

[58]  W. Mader,et al.  Structural and elemental analysis of iron and indium doped zinc oxide by spectroscopic imaging in Cs-corrected STEM. , 2012, Micron.