Integrated Bioassays in Microfluidic Devices: Botulinum Toxin Assays

A microfluidic assay was developed for screening botulinum neurotoxin serotype A (BoNT-A) by using a fluorescent resonance energy transfer (FRET) assay. Molded silicone microdevices with integral valves, pumps, and reagent reservoirs were designed and fabricated. 1-4Electrical and pneumatic control hardwarewere constructed, and softwarewaswritten to automate the assay protocol and data acquisition. Detection was accomplished by fluorescence microscopy. The system was validated with a peptide inhibitor, running 2 parallel assays, as a feasibility demonstration. The small footprint of each bioreactor cell (0.5cm2) and scalable fluidic architecture enabled many parallel assays on a single chip. The chip is programmable to run a dilution series in each lane, generating concentration-response data for multiple inhibitors. The assay results showed good agreement with the corresponding experiments done at a macroscale level. Although the system has been developed for BoNT-A screening, awide variety of assays can be performed on themicrofluidic chipwith little or nomodification.