Context-Independent Claim Detection for Argument Mining

Argumentation mining aims to automatically identify structured argument data from unstructured natural language text. This challenging, multi-faceted task is recently gaining a growing attention, especially due to its many potential applications. One particularly important aspect of argumentation mining is claim identification. Most of the current approaches are engineered to address specific domains. However, argumentative sentences are often characterized by common rhetorical structures, independently of the domain. We thus propose a method that exploits structured parsing information to detect claims without resorting to contextual information, and yet achieve a performance comparable to that of state-of-the-art methods that heavily rely on the context.

[1]  Robert J. Fogelin Understanding Arguments: An Introduction to Informal Logic , 1978 .

[2]  K. Menninger Law , 1984, Encyclopedia of Autism Spectrum Disorders.

[3]  Editors , 1986, Brain Research Bulletin.

[4]  A. Knott,et al.  Using Linguistic Phenomena to Motivate a Set of Coherence Relations. , 1994 .

[5]  Alessandro Moschitti,et al.  Efficient Convolution Kernels for Dependency and Constituent Syntactic Trees , 2006, ECML.

[6]  Alessandro Moschitti,et al.  Making Tree Kernels Practical for Natural Language Learning , 2006, EACL.

[7]  Trevor J. M. Bench-Capon,et al.  Argumentation in artificial intelligence , 2007, Artif. Intell..

[8]  Douglas Walton,et al.  Argumentation Theory: A Very Short Introduction , 2009, Argumentation in Artificial Intelligence.

[9]  Graeme Hirst,et al.  Classifying arguments by scheme , 2011, ACL.

[10]  Vincenzo Pallotta,et al.  Automatic argumentative analysis for interaction mining , 2011, Argument Comput..

[11]  Owen Rambow,et al.  Sentiment Analysis of Twitter Data , 2011 .

[12]  Alessandro Moschitti,et al.  State-of-the-Art Kernels for Natural Language Processing , 2012, ACL.

[13]  Karin M. Verspoor,et al.  Tutorial Abstracts of ACL 2012 , 2012 .

[14]  Serena Villata,et al.  Combining Textual Entailment and Argumentation Theory for Supporting Online Debates Interactions , 2012, ACL.

[15]  Patrick Saint-Dizier,et al.  Some Facets of Argument Mining for Opinion Analysis , 2012, COMMA.

[16]  Serena Villata,et al.  A natural language bipolar argumentation approach to support users in online debate interactions† , 2013, Argument Comput..

[17]  Kevin D. Ashley,et al.  Toward constructing evidence-based legal arguments using legal decision documents and machine learning , 2013, ICAIL.

[18]  Guillermo Ricardo Simari,et al.  The Added Value of Argumentation , 2013 .

[19]  Noam Slonim,et al.  Context Dependent Claim Detection , 2014, COLING.

[20]  Iryna Gurevych,et al.  Identifying Argumentative Discourse Structures in Persuasive Essays , 2014, EMNLP.

[21]  David Konopnicki,et al.  Claims on demand – an initial demonstration of a system for automatic detection and polarity identification of context dependent claims in massive corpora , 2014, COLING.

[22]  Iryna Gurevych,et al.  Annotating Argument Components and Relations in Persuasive Essays , 2014, COLING.

[23]  Wamberto Weber Vasconcelos,et al.  Scrutable plan enactment via argumentation and natural language generation , 2014, AAMAS.

[24]  Noam Slonim,et al.  A Benchmark Dataset for Automatic Detection of Claims and Evidence in the Context of Controversial Topics , 2014, ArgMining@ACL.

[25]  Claudia Schulz,et al.  Arg Teach - A Learning Tool for Argumentation Theory , 2014, 2014 IEEE 26th International Conference on Tools with Artificial Intelligence.

[26]  Simon Wells Argument Mining: Was Ist Das? , 2014 .

[27]  Serena Villata,et al.  NoDE: A Benchmark of Natural Language Arguments , 2014, COMMA.

[28]  Peter Kulchyski and , 2015 .