Visual information for prospective control of tracking irregular target paths with isometric force production.

The prospective control of isometric force tracking was investigated as a function of the duration of visual information about past and future properties of target paths that varied in regularity. Longer duration of information specifying future behavior significantly enhanced performance when past information was not available. Furthermore, target path regularity differentially influenced local and global performance properties as the duration of prospective information increased. For more regular target paths, longer duration of prospective visual information improved local properties (e.g., decreased error), whereas, for less regular target paths, longer duration of prospective visual information enhanced global properties of force production (e.g., spectral slope). The strategies of prospective control depend on the interaction of the regularity of motor output and the available informational support.

[1]  Romi Nijhawan,et al.  Visual prediction: Psychophysics and neurophysiology of compensation for time delays , 2008, Behavioral and Brain Sciences.

[2]  David N. Lee,et al.  Visual control of locomotion. , 1977, Scandinavian journal of psychology.

[3]  S M Pincus,et al.  Approximate entropy as a measure of system complexity. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[4]  E. C. Poulton,et al.  Tracking skill and manual control , 1974 .

[5]  Michael C. Corballis,et al.  Mental time travel across the disciplines: The future looks bright , 2007 .

[6]  David N. Lee,et al.  Prospective Control in Catching by Infants , 1994, Perception.

[7]  Lorraine G. Kisselburgh,et al.  Rapid visual feedback processing in single-aiming movements. , 1983, Journal of motor behavior.

[8]  B. Repp Sensorimotor synchronization: A review of the tapping literature , 2005, Psychonomic bulletin & review.

[9]  M K Kaiser,et al.  How baseball outfielders determine where to run to catch fly balls. , 1995, Science.

[10]  K. Newell,et al.  Intermittency in the control of continuous force production. , 2000, Journal of neurophysiology.

[11]  A. Bastian Learning to predict the future: the cerebellum adapts feedforward movement control , 2006, Current Opinion in Neurobiology.

[12]  Bruce J. West,et al.  Fractal physiology , 1994, IEEE Engineering in Medicine and Biology Magazine.

[13]  Michael T. Turvey,et al.  On strong anticipation , 2010, Cognitive Systems Research.

[14]  C. Hofsten Prospective Control: A Basic Aspect of Action Development , 1993 .

[15]  David N. Lee,et al.  Visual Timing in Hitting An Accelerating Ball , 1983, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[16]  K. Newell,et al.  Intermittent visual information and the multiple time scales of visual motor control of continuous isometric force production , 2005, Perception & psychophysics.

[17]  Claes von Hofsten,et al.  Action in development. , 2007 .

[18]  Karl M Newell,et al.  The adaptive range of 1/f isometric force production. , 2009, Journal of experimental psychology. Human perception and performance.

[19]  R W Pew,et al.  Levels of analysis in motor control. , 1974, Brain research.

[20]  L. Carlton Processing visual feedback information for movement control. , 1981, Journal of experimental psychology. Human perception and performance.

[21]  Yasmin L. Hashambhoy,et al.  Neural Correlates of Reach Errors , 2005, The Journal of Neuroscience.

[22]  David E. Irwin,et al.  Modern mental chronometry , 1988, Biological Psychology.

[23]  W. M. Smith,et al.  The effects of delayed and displaced visual feedback on motor control. , 1980, Journal of motor behavior.

[24]  Michael Smithson,et al.  Judgment under Chaos , 1997 .

[25]  Romi Nijhawan,et al.  Motion extrapolation in catching , 1994, Nature.

[26]  Joan N. Vickers,et al.  How far ahead do we look when required to step on specific locations in the travel path during locomotion? , 2002, Experimental Brain Research.

[27]  Michael T. Turvey,et al.  Anticipating synchronization as an alternative to the internal model , 2008, Behavioral and Brain Sciences.

[28]  Poulton Ec On prediction in skilled movements. , 1957 .

[29]  P. Milgram,et al.  The effects of periodic visual occlusion on ball catching. , 1994, Journal of motor behavior.

[30]  C Athena Aktipis,et al.  The ecology of entrainment: Foundations of coordinated rhythmic movement. , 2010, Music perception.

[31]  Michael I. Jordan,et al.  An internal model for sensorimotor integration. , 1995, Science.

[32]  Edward W. Large,et al.  Tracking simple and complex sequences , 2002, Psychological research.

[33]  E. O. Poulton,et al.  POSTVIEW AND PREVIEW IN TRACKING WITH COMPLEX AND SIMPLE INPUTS , 1964 .

[34]  Michael T. Turvey,et al.  Strong anticipation: Sensitivity to long-range correlations in synchronization behavior , 2008 .

[35]  Astros Chatziastros,et al.  The role of visual and nonvisual feedback in a vehicle steering task. , 2007, Journal of experimental psychology. Human perception and performance.