Bacillus spp. Produce Antibacterial Activities Against Lactic Acid Bacteria that Contaminate Fuel Ethanol Plants

[1]  M. Kjos,et al.  Natural antimicrobial peptides from bacteria: characteristics and potential applications to fight against antibiotic resistance , 2012, Journal of applied microbiology.

[2]  T. Leathers,et al.  Multilocus phylogenetic analyses, pullulan production and xylanase activity of tropical isolates of Aureobasidium pullulans. , 2009, Mycological research.

[3]  T. Leathers,et al.  Modeling bacterial contamination of fuel ethanol fermentation , 2009, Biotechnology and bioengineering.

[4]  M. Ongena,et al.  Bacillus lipopeptides: versatile weapons for plant disease biocontrol. , 2008, Trends in microbiology.

[5]  B. Bonev,et al.  Molecular Mechanism of Target Recognition by Subtilin, a Class I Lanthionine Antibiotic , 2007, Antimicrobial Agents and Chemotherapy.

[6]  T. Leathers,et al.  Antimicrobial susceptibility of Lactobacillus species isolated from commercial ethanol plants , 2007, Journal of Industrial Microbiology & Biotechnology.

[7]  A. Rooney,et al.  Mass spectrometric analysis of lipopeptides from Bacillus strains isolated from diverse geographical locations. , 2007, FEMS microbiology letters.

[8]  T. Leathers,et al.  Biofilm formation by bacterial contaminants of fuel ethanol production , 2007, Biotechnology Letters.

[9]  A. Brandelli,et al.  Purification and partial chemical characterization of the antimicrobial peptide cerein 8A , 2005, Letters in applied microbiology.

[10]  T. Stein Bacillus subtilis antibiotics: structures, syntheses and specific functions , 2005, Molecular microbiology.

[11]  T. Leathers,et al.  Bacterial contaminants of fuel ethanol production , 2004, Journal of Industrial Microbiology and Biotechnology.

[12]  A. Kolstø,et al.  Characterization of a broad range antimicrobial substance from Bacillus cereus , 2004, Journal of applied microbiology.

[13]  R. Mannanov,et al.  Antibiotics Produced by Bacillus Bacteria , 2001, Chemistry of Natural Compounds.

[14]  T. P. Lyons,et al.  The alcohol textbook , 2003 .

[15]  Jang-Jih Lu,et al.  Use of PCR with Universal Primers and Restriction Endonuclease Digestions for Detection and Identification of Common Bacterial Pathogens in Cerebrospinal Fluid , 2000, Journal of Clinical Microbiology.

[16]  I. Lasa,et al.  Detection and characterization of cerein 7, a new bacteriocin produced by Bacillus cereus with a broad spectrum of activity. , 1999, FEMS microbiology letters.

[17]  T. Stein,et al.  Separation and Characterization of Surfactin Isoforms Produced byBacillus subtilisOKB 105 , 1998 .

[18]  Franke,et al.  Separation and Characterization of Surfactin Isoforms Produced by Bacillus subtilis OKB 105 , 1998, Journal of colloid and interface science.

[19]  W. M. Ingledew,et al.  Effects of lactobacilli on yeast-catalyzed ethanol fermentations , 1997, Applied and environmental microbiology.

[20]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[21]  M. Mori,et al.  A novel dodecadepsipeptide, cereulide, isolated from Bacillus cereus causes vacuole formation in HEp-2 cells. , 1994, FEMS microbiology letters.

[22]  M. De Felice,et al.  Antimicrobial activity of a newly identified bacteriocin of Bacillus cereus , 1993, Applied and environmental microbiology.

[23]  M. Phansalkar,et al.  Mersacidin, a new antibiotic from Bacillus. Fermentation, isolation, purification and chemical characterization. , 1992, The Journal of antibiotics.

[24]  D. Makanjuola,et al.  Some effects of lactic acid bacteria on laboratory-scale yeast fermentations , 1992 .

[25]  A. W. Bernheimer,et al.  Nature and properties of a cytolytic agent produced by Bacillus subtilis. , 1970, Journal of general microbiology.