Second Data Release from the European Pulsar Timing Array: Challenging the Ultralight Dark Matter Paradigm.
暂无分享,去创建一个
S. Babak | A. Petiteau | G. Desvignes | I. Cognard | G. Theureau | A. Samajdar | B. Goncharov | A. Vecchio | A. Lyne | B. Stappers | A. Possenti | M. Burgay | K. Lackeos | R. Karuppusamy | M. Keith | M. Mickaliger | A. Parthasarathy | N. Porayko | A. Sesana | M. Krishnakumar | L. Guillemot | E. Keane | C. Bassa | C. Tiburzi | R. Ferdman | J. Grießmeier | R. Spiewak | S. Sanidas | D. Perrodin | G. Janssen | A. Jessner | R. N. Caballero | E. Graikou | J. McKee | B. Perera | G. Shaifullah | J. Antoniadis | E. Barausse | E. Bortolas | S. Chen | R. Main | J. Jang | A. Franchini | M. Bonetti | M. Falxa | Y. Liu | A. B. Nielsen | Z. Wu | L. Speri | D. Izquierdo-Villalba | S. Chanlaridis | H. Hu | L. Wang | A. Chalumeau | E. van der Wateren | F. Iraci | A. Berthereau | S. Susarla | J. Jawor | K. Liu | J. Gair | I. C. Niţu | H. Q. Leclere | C. Smarra | V. V. Krishnan | J. Griessmeier | M. Kramer | P. R. Brook | D. Champion | Y. J. Guo | K. J. Lee | J. Wang
[1] B. C. Joshi,et al. The second data release from the European Pulsar Timing Array , 2023, Astronomy & Astrophysics.
[2] B. C. Joshi,et al. The second data release from the European Pulsar Timing Array. III. Search for gravitational wave signals , 2023, Astronomy & Astrophysics.
[3] B. C. Joshi,et al. The second data release from the European Pulsar Timing Array V. Search for continuous gravitational wave signals , 2023, Astronomy & Astrophysics.
[4] J. Gair,et al. The second data release from the European Pulsar Timing Array. I. The dataset and timing analysis , 2023, Astronomy & Astrophysics.
[5] B. W. Meyers,et al. The NANOGrav 15 yr Data Set: Search for Signals from New Physics , 2023, The Astrophysical Journal Letters.
[6] S. Babak,et al. The second data release from the European Pulsar Timing Array. II. Customised pulsar noise models for spatially correlated gravitational waves , 2023, Astronomy & Astrophysics.
[7] Xiaoyuan Huang,et al. Constraining ultralight dark matter using the Fermi-LAT pulsar timing array , 2023, Physical Review D.
[8] G. Theureau,et al. The MeerKAT Pulsar Timing Array: First Data Release , 2022, Monthly Notices of the Royal Astronomical Society.
[9] A. Kravtsov,et al. Excluding fuzzy dark matter with sizes and stellar kinematics of ultrafaint dwarf galaxies , 2022, Physical Review D.
[10] E. Kovetz,et al. Probing ultralight scalar, vector and tensor dark matter with pulsar timing arrays , 2022, Physics Letters B.
[11] E. Thrane,et al. Consistency of the Parkes Pulsar Timing Array Signal with a Nanohertz Gravitational-wave Background , 2022, The Astrophysical Journal Letters.
[12] A. Mitridate,et al. Constraining fundamental constant variations from ultralight dark matter with pulsar timing arrays , 2022, Physical Review D.
[13] P. Salucci,et al. The Accurate Mass Distribution of M87, the Giant Galaxy with Imaged Shadow of Its Supermassive Black Hole, as a Portal to New Physics , 2022, The Astrophysical Journal.
[14] A. Kravtsov,et al. Not so fuzzy: excluding FDM with sizes and stellar kinematics of ultra-faint dwarf galaxies , 2022, 2203.05750.
[15] B. Goncharov,et al. High-precision search for dark photon dark matter with the Parkes Pulsar Timing Array , 2021, Physical Review Research.
[16] Kohei Hayashi,et al. Narrowing the Mass Range of Fuzzy Dark Matter with Ultrafaint Dwarfs , 2021, The Astrophysical Journal Letters.
[17] C. A. Oxborrow,et al. Planck 2018 results , 2020, Astronomy & Astrophysics.
[18] H. Peiris,et al. Strong Bound on Canonical Ultralight Axion Dark Matter from the Lyman-Alpha Forest. , 2020, Physical review letters.
[19] H. Ramani,et al. Observability of dark matter substructure with pulsar timing correlations , 2020, Journal of Cosmology and Astroparticle Physics.
[20] Stephen Taylor,et al. ENTERPRISE: Enhanced Numerical Toolbox Enabling a Robust PulsaR Inference SuitE , 2019 .
[21] P. F. de Salas. Dark matter local density determination based on recent observations , 2019, Journal of Physics: Conference Series.
[22] Tristan L. Smith,et al. Realistic sensitivity curves for pulsar timing arrays , 2019, Physical Review D.
[23] Gary P. Centers,et al. Stochastic fluctuations of bosonic dark matter , 2019, Nature Communications.
[24] Matthew Kerr,et al. Parkes Pulsar Timing Array constraints on ultralight scalar-field dark matter , 2018, Physical Review D.
[25] M. Chu,et al. Cosmological Simulation for Fuzzy Dark Matter Model , 2018, Front. Astron. Space Sci..
[26] Matteo Viel,et al. Lyman α forest and non-linear structure characterization in Fuzzy Dark Matter cosmologies , 2018, Monthly Notices of the Royal Astronomical Society.
[27] R. B. Barreiro,et al. Planck 2018 results , 2018, Astronomy & Astrophysics.
[28] R. Morganti. The Many Routes to AGN Feedback , 2017, Front. Astron. Space Sci..
[29] B. Safdi,et al. Revealing the dark matter halo with axion direct detection , 2017, Physical Review D.
[30] G. Bertone,et al. The Local Dark Matter Density from SDSS-SEGUE G-dwarfs , 2017, 1708.07836.
[31] Matteo Viel,et al. Lyman-alpha Constraints on Ultralight Scalar Dark Matter: Implications for the Early and Late Universe , 2017, 1708.00015.
[32] Eric Armengaud,et al. Constraining the mass of light bosonic dark matter using SDSS Lyman-α forest , 2017, 1703.09126.
[33] Matteo Viel,et al. First Constraints on Fuzzy Dark Matter from Lyman-α Forest Data and Hydrodynamical Simulations. , 2017, Physical review letters.
[34] L. Lentati,et al. All correlations must die: Assessing the significance of a stochastic gravitational-wave background in pulsar timing arrays , 2016, 1606.09180.
[35] D. Stinebring,et al. The International Pulsar Timing Array: First Data Release , 2016, 1602.03640.
[36] O. Agertz,et al. Dark matter cores all the way down , 2015, 1508.04143.
[37] Caltech,et al. The impact of baryonic physics on the structure of dark matter haloes: the view from the FIRE cosmological simulations , 2015, 1507.02282.
[38] P. Salucci,et al. The dark matter distribution in the spiral NGC 3198 out to 0.22 Rvir , 2015, 1503.04049.
[39] P. Hopkins,et al. Forged in FIRE: cusps, cores and baryons in low-mass dwarf galaxies , 2015, 1502.02036.
[40] Daniel Grin,et al. A search for ultralight axions using precision cosmological data , 2014, 1410.2896.
[41] N. Porayko,et al. Constraints on ultralight scalar dark matter from pulsar timing , 2014, 1408.4670.
[42] Tzihong Chiueh,et al. Understanding the core-halo relation of quantum wave dark matter from 3D simulations. , 2014, Physical review letters.
[43] J. Read. The local dark matter density , 2014, 1404.1938.
[44] F. Feroz,et al. TempoNest: A Bayesian approach to pulsar timing analysis , 2013, 1310.2120.
[45] V. Rubakov,et al. Pulsar timing signal from ultralight scalar dark matter , 2013, 1309.5888.
[46] P. Salucci,et al. The Dark Matter halo of the Milky Way, AD 2013 , 2013, 1304.5127.
[47] Edward J. Wollack,et al. NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS , 2012, 1212.5225.
[48] P. Salucci,et al. The Local Dark Matter Density , 2012, 1212.3670.
[49] D. Hooper,et al. A BARYONIC SOLUTION TO THE MISSING SATELLITES PROBLEM , 2012, 1209.5394.
[50] S. Oh,et al. Cuspy No More: How Outflows Affect the Central Dark Matter and Baryon Distribution in Lambda CDM Galaxies , 2012, 1202.0554.
[51] K. Gebhardt,et al. THE DARK MATTER DENSITY PROFILE OF THE FORNAX DWARF , 2011, 1112.0319.
[52] M. Boylan-Kolchin,et al. Too big to fail? The puzzling darkness of massive Milky Way subhaloes , 2011, 1103.0007.
[53] N. Kaloper,et al. String Axiverse , 2009, 0905.4720.
[54] Y. Levin,et al. On measuring the gravitational-wave background using Pulsar Timing Arrays , 2008, 0809.0791.
[55] D. Clowe,et al. A Direct Empirical Proof of the Existence of Dark Matter , 2006, astro-ph/0608407.
[56] Peter Svrček,et al. Axions In String Theory , 2006, hep-th/0605206.
[57] 経済団体連合会. Official Release 経団連 商法改正への提言 , 2000 .
[58] George Lake,et al. Dark Matter Substructure within Galactic Halos , 1999, astro-ph/9907411.
[59] F. Prada,et al. Where are the missing galactic satellites? , 1999, astro-ph/9901240.
[60] C. Frenk,et al. The cores of dwarf galaxy haloes , 1996, astro-ph/9610187.
[61] B. Moore. Evidence against dissipation-less dark matter from observations of galaxy haloes , 1994, Nature.
[62] J. Primack,et al. OBSERVATIONAL AND THEORETICAL CONSTRAINTS ON SINGULAR DARK MATTER HALOS , 1994, astro-ph/9402004.
[63] Michael B. Green,et al. SUPERSTRING THEORY. VOL. 1: INTRODUCTION , 1987 .
[64] R. Blandford,et al. Arrival-time analysis for a millisecond pulsar , 1984 .
[65] V. Rubin,et al. Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 /R = 4kpc/ to UGC 2885 /R = 122 kpc/ , 1980 .
[66] J. Dickey. The Weighted Likelihood Ratio, Linear Hypotheses on Normal Location Parameters , 1971 .
[67] V. Rubin,et al. Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions , 1970 .
[68] F. Zwicky. On the Masses of Nebulae and of Clusters of Nebulae , 1937 .
[69] G. Smoot,et al. Anomalies in Gravitational-Lensed Images Revealing Einstein Rings Modulated by Wavelike Dark Matter , 2023 .
[70] F. Zwicky,et al. Republication of: The redshift of extragalactic nebulae , 1933 .
[71] R. Freedman. Notice , 2008, Economic Botany.