Second Data Release from the European Pulsar Timing Array: Challenging the Ultralight Dark Matter Paradigm.

Pulsar Timing Array experiments probe the presence of possible scalar or pseudoscalar ultralight dark matter particles through decade-long timing of an ensemble of galactic millisecond radio pulsars. With the second data release of the European Pulsar Timing Array, we focus on the most robust scenario, in which dark matter interacts only gravitationally with ordinary baryonic matter. Our results show that ultralight particles with masses 10^{-24.0}  eV≲m≲10^{-23.3}  eV cannot constitute 100% of the measured local dark matter density, but can have at most local density ρ≲0.3  GeV/cm^{3}.

[1]  B. C. Joshi,et al.  The second data release from the European Pulsar Timing Array , 2023, Astronomy & Astrophysics.

[2]  B. C. Joshi,et al.  The second data release from the European Pulsar Timing Array. III. Search for gravitational wave signals , 2023, Astronomy & Astrophysics.

[3]  B. C. Joshi,et al.  The second data release from the European Pulsar Timing Array V. Search for continuous gravitational wave signals , 2023, Astronomy & Astrophysics.

[4]  J. Gair,et al.  The second data release from the European Pulsar Timing Array. I. The dataset and timing analysis , 2023, Astronomy & Astrophysics.

[5]  B. W. Meyers,et al.  The NANOGrav 15 yr Data Set: Search for Signals from New Physics , 2023, The Astrophysical Journal Letters.

[6]  S. Babak,et al.  The second data release from the European Pulsar Timing Array. II. Customised pulsar noise models for spatially correlated gravitational waves , 2023, Astronomy & Astrophysics.

[7]  Xiaoyuan Huang,et al.  Constraining ultralight dark matter using the Fermi-LAT pulsar timing array , 2023, Physical Review D.

[8]  G. Theureau,et al.  The MeerKAT Pulsar Timing Array: First Data Release , 2022, Monthly Notices of the Royal Astronomical Society.

[9]  A. Kravtsov,et al.  Excluding fuzzy dark matter with sizes and stellar kinematics of ultrafaint dwarf galaxies , 2022, Physical Review D.

[10]  E. Kovetz,et al.  Probing ultralight scalar, vector and tensor dark matter with pulsar timing arrays , 2022, Physics Letters B.

[11]  E. Thrane,et al.  Consistency of the Parkes Pulsar Timing Array Signal with a Nanohertz Gravitational-wave Background , 2022, The Astrophysical Journal Letters.

[12]  A. Mitridate,et al.  Constraining fundamental constant variations from ultralight dark matter with pulsar timing arrays , 2022, Physical Review D.

[13]  P. Salucci,et al.  The Accurate Mass Distribution of M87, the Giant Galaxy with Imaged Shadow of Its Supermassive Black Hole, as a Portal to New Physics , 2022, The Astrophysical Journal.

[14]  A. Kravtsov,et al.  Not so fuzzy: excluding FDM with sizes and stellar kinematics of ultra-faint dwarf galaxies , 2022, 2203.05750.

[15]  B. Goncharov,et al.  High-precision search for dark photon dark matter with the Parkes Pulsar Timing Array , 2021, Physical Review Research.

[16]  Kohei Hayashi,et al.  Narrowing the Mass Range of Fuzzy Dark Matter with Ultrafaint Dwarfs , 2021, The Astrophysical Journal Letters.

[17]  C. A. Oxborrow,et al.  Planck 2018 results , 2020, Astronomy & Astrophysics.

[18]  H. Peiris,et al.  Strong Bound on Canonical Ultralight Axion Dark Matter from the Lyman-Alpha Forest. , 2020, Physical review letters.

[19]  H. Ramani,et al.  Observability of dark matter substructure with pulsar timing correlations , 2020, Journal of Cosmology and Astroparticle Physics.

[20]  Stephen Taylor,et al.  ENTERPRISE: Enhanced Numerical Toolbox Enabling a Robust PulsaR Inference SuitE , 2019 .

[21]  P. F. de Salas Dark matter local density determination based on recent observations , 2019, Journal of Physics: Conference Series.

[22]  Tristan L. Smith,et al.  Realistic sensitivity curves for pulsar timing arrays , 2019, Physical Review D.

[23]  Gary P. Centers,et al.  Stochastic fluctuations of bosonic dark matter , 2019, Nature Communications.

[24]  Matthew Kerr,et al.  Parkes Pulsar Timing Array constraints on ultralight scalar-field dark matter , 2018, Physical Review D.

[25]  M. Chu,et al.  Cosmological Simulation for Fuzzy Dark Matter Model , 2018, Front. Astron. Space Sci..

[26]  Matteo Viel,et al.  Lyman α forest and non-linear structure characterization in Fuzzy Dark Matter cosmologies , 2018, Monthly Notices of the Royal Astronomical Society.

[27]  R. B. Barreiro,et al.  Planck 2018 results , 2018, Astronomy & Astrophysics.

[28]  R. Morganti The Many Routes to AGN Feedback , 2017, Front. Astron. Space Sci..

[29]  B. Safdi,et al.  Revealing the dark matter halo with axion direct detection , 2017, Physical Review D.

[30]  G. Bertone,et al.  The Local Dark Matter Density from SDSS-SEGUE G-dwarfs , 2017, 1708.07836.

[31]  Matteo Viel,et al.  Lyman-alpha Constraints on Ultralight Scalar Dark Matter: Implications for the Early and Late Universe , 2017, 1708.00015.

[32]  Eric Armengaud,et al.  Constraining the mass of light bosonic dark matter using SDSS Lyman-α forest , 2017, 1703.09126.

[33]  Matteo Viel,et al.  First Constraints on Fuzzy Dark Matter from Lyman-α Forest Data and Hydrodynamical Simulations. , 2017, Physical review letters.

[34]  L. Lentati,et al.  All correlations must die: Assessing the significance of a stochastic gravitational-wave background in pulsar timing arrays , 2016, 1606.09180.

[35]  D. Stinebring,et al.  The International Pulsar Timing Array: First Data Release , 2016, 1602.03640.

[36]  O. Agertz,et al.  Dark matter cores all the way down , 2015, 1508.04143.

[37]  Caltech,et al.  The impact of baryonic physics on the structure of dark matter haloes: the view from the FIRE cosmological simulations , 2015, 1507.02282.

[38]  P. Salucci,et al.  The dark matter distribution in the spiral NGC 3198 out to 0.22 Rvir , 2015, 1503.04049.

[39]  P. Hopkins,et al.  Forged in FIRE: cusps, cores and baryons in low-mass dwarf galaxies , 2015, 1502.02036.

[40]  Daniel Grin,et al.  A search for ultralight axions using precision cosmological data , 2014, 1410.2896.

[41]  N. Porayko,et al.  Constraints on ultralight scalar dark matter from pulsar timing , 2014, 1408.4670.

[42]  Tzihong Chiueh,et al.  Understanding the core-halo relation of quantum wave dark matter from 3D simulations. , 2014, Physical review letters.

[43]  J. Read The local dark matter density , 2014, 1404.1938.

[44]  F. Feroz,et al.  TempoNest: A Bayesian approach to pulsar timing analysis , 2013, 1310.2120.

[45]  V. Rubakov,et al.  Pulsar timing signal from ultralight scalar dark matter , 2013, 1309.5888.

[46]  P. Salucci,et al.  The Dark Matter halo of the Milky Way, AD 2013 , 2013, 1304.5127.

[47]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS , 2012, 1212.5225.

[48]  P. Salucci,et al.  The Local Dark Matter Density , 2012, 1212.3670.

[49]  D. Hooper,et al.  A BARYONIC SOLUTION TO THE MISSING SATELLITES PROBLEM , 2012, 1209.5394.

[50]  S. Oh,et al.  Cuspy No More: How Outflows Affect the Central Dark Matter and Baryon Distribution in Lambda CDM Galaxies , 2012, 1202.0554.

[51]  K. Gebhardt,et al.  THE DARK MATTER DENSITY PROFILE OF THE FORNAX DWARF , 2011, 1112.0319.

[52]  M. Boylan-Kolchin,et al.  Too big to fail? The puzzling darkness of massive Milky Way subhaloes , 2011, 1103.0007.

[53]  N. Kaloper,et al.  String Axiverse , 2009, 0905.4720.

[54]  Y. Levin,et al.  On measuring the gravitational-wave background using Pulsar Timing Arrays , 2008, 0809.0791.

[55]  D. Clowe,et al.  A Direct Empirical Proof of the Existence of Dark Matter , 2006, astro-ph/0608407.

[56]  Peter Svrček,et al.  Axions In String Theory , 2006, hep-th/0605206.

[57]  経済団体連合会 Official Release 経団連 商法改正への提言 , 2000 .

[58]  George Lake,et al.  Dark Matter Substructure within Galactic Halos , 1999, astro-ph/9907411.

[59]  F. Prada,et al.  Where are the missing galactic satellites? , 1999, astro-ph/9901240.

[60]  C. Frenk,et al.  The cores of dwarf galaxy haloes , 1996, astro-ph/9610187.

[61]  B. Moore Evidence against dissipation-less dark matter from observations of galaxy haloes , 1994, Nature.

[62]  J. Primack,et al.  OBSERVATIONAL AND THEORETICAL CONSTRAINTS ON SINGULAR DARK MATTER HALOS , 1994, astro-ph/9402004.

[63]  Michael B. Green,et al.  SUPERSTRING THEORY. VOL. 1: INTRODUCTION , 1987 .

[64]  R. Blandford,et al.  Arrival-time analysis for a millisecond pulsar , 1984 .

[65]  V. Rubin,et al.  Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 /R = 4kpc/ to UGC 2885 /R = 122 kpc/ , 1980 .

[66]  J. Dickey The Weighted Likelihood Ratio, Linear Hypotheses on Normal Location Parameters , 1971 .

[67]  V. Rubin,et al.  Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions , 1970 .

[68]  F. Zwicky On the Masses of Nebulae and of Clusters of Nebulae , 1937 .

[69]  G. Smoot,et al.  Anomalies in Gravitational-Lensed Images Revealing Einstein Rings Modulated by Wavelike Dark Matter , 2023 .

[70]  F. Zwicky,et al.  Republication of: The redshift of extragalactic nebulae , 1933 .

[71]  R. Freedman Notice , 2008, Economic Botany.