Computational inference of cancer-specific vulnerabilities in clinical samples

[1]  Min Kyung Sung,et al.  Computational inference of cancer-specific vulnerabilities in clinical samples , 2020, Genome Biology.

[2]  Emanuel J. V. Gonçalves,et al.  Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens , 2019, Nature.

[3]  Aviad Tsherniak,et al.  Improved estimation of cancer dependencies from large-scale RNAi screens using model-based normalization and data integration , 2018, Nature Communications.

[4]  J. Choi,et al.  Novel cancer gene variants and gene fusions of triple-negative breast cancers (TNBCs) reveal their molecular diversity conserved in the patient-derived xenograft (PDX) model. , 2018, Cancer letters.

[5]  Anindya Dutta,et al.  ASF1a Promotes Non-homologous End Joining Repair by Facilitating Phosphorylation of MDC1 by ATM at Double-Strand Breaks. , 2017, Molecular cell.

[6]  Feng Zhang,et al.  Identification of essential genes for cancer immunotherapy , 2017, Nature.

[7]  Phillip G. Montgomery,et al.  Defining a Cancer Dependency Map , 2017, Cell.

[8]  Antoine de Weck,et al.  Project DRIVE: A Compendium of Cancer Dependencies and Synthetic Lethal Relationships Uncovered by Large-Scale, Deep RNAi Screening , 2017, Cell.

[9]  Ann E. Sizemore,et al.  Computational correction of copy-number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells , 2017, Nature Genetics.

[10]  P. Hieter,et al.  Synthetic lethality and cancer , 2017, Nature Reviews Genetics.

[11]  Insuk Lee,et al.  Network perturbation by recurrent regulatory variants in cancer , 2017, PLoS Comput. Biol..

[12]  Eric S. Lander,et al.  Gene Essentiality Profiling Reveals Gene Networks and Synthetic Lethal Interactions with Oncogenic Ras , 2017, Cell.

[13]  Gary D Bader,et al.  Functional Genomic Landscape of Human Breast Cancer Drivers, Vulnerabilities, and Resistance , 2016, Cell.

[14]  D. Durocher,et al.  High-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities , 2015, Cell.

[15]  J. Moffat,et al.  BAGEL: a computational framework for identifying essential genes from pooled library screens , 2015, bioRxiv.

[16]  E. Lander,et al.  Identification and characterization of essential genes in the human genome , 2015, Science.

[17]  Kurt Hornik,et al.  Misc Functions of the Department of Statistics, ProbabilityTheory Group (Formerly: E1071), TU Wien , 2015 .

[18]  Kiwon Jang,et al.  Global transcription network incorporating distal regulator binding reveals selective cooperation of cancer drivers and risk genes , 2015, Nucleic acids research.

[19]  F. Dietlein,et al.  Cancer-specific defects in DNA repair pathways as targets for personalized therapeutic approaches. , 2014, Trends in genetics : TIG.

[20]  J. Moffat,et al.  Measuring error rates in genomic perturbation screens: gold standards for human functional genomics , 2014, bioRxiv.

[21]  E. Levanon,et al.  Corrigendum to: Human housekeeping genes, revisited: [Trends in Genetics 29 (2013), 569–574] , 2014 .

[22]  W. Edelmann,et al.  A functional cancer genomics screen identifies a druggable synthetic lethal interaction between MSH3 and PRKDC. , 2014, Cancer discovery.

[23]  David A. Scott,et al.  Genome engineering using the CRISPR-Cas9 system , 2013, Nature Protocols.

[24]  E. Levanon,et al.  Human housekeeping genes, revisited. , 2013, Trends in genetics : TIG.

[25]  Geoffrey E. Hinton,et al.  On the importance of initialization and momentum in deep learning , 2013, ICML.

[26]  Roman K. Thomas,et al.  Therapeutic Targeting of a Robust Non-Oncogene Addiction to PRKDC in ATM-Defective Tumors , 2013, Science Translational Medicine.

[27]  Edward Y. Chen,et al.  Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool , 2013, BMC Bioinformatics.

[28]  K. Kinzler,et al.  Cancer Genome Landscapes , 2013, Science.

[29]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumours , 2013 .

[30]  Jill P. Mesirov,et al.  Cancer Vulnerabilities Unveiled by Genomic Loss , 2012, Cell.

[31]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumors , 2012, Nature.

[32]  H. Lo,et al.  Landscape of EGFR signaling network in human cancers: biology and therapeutic response in relation to receptor subcellular locations. , 2012, Cancer letters.

[33]  Kevin R Brown,et al.  Essential gene profiles in breast, pancreatic, and ovarian cancer cells. , 2012, Cancer discovery.

[34]  G. Getz,et al.  GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers , 2011, Genome Biology.

[35]  William N. Venables,et al.  Modern Applied Statistics with S , 2010 .

[36]  M. Schaller,et al.  Nuclear EGFR shuttling induced by ionizing radiation is regulated by phosphorylation at residue Thr654 , 2010, FEBS letters.

[37]  Yoshua Bengio,et al.  Why Does Unsupervised Pre-training Help Deep Learning? , 2010, AISTATS.

[38]  Razvan Pascanu,et al.  Theano: A CPU and GPU Math Compiler in Python , 2010, SciPy.

[39]  Xu Peng,et al.  Activation of the Ran GTPase Is Subject to Growth Factor Regulation and Can Give Rise to Cellular Transformation* , 2009, The Journal of Biological Chemistry.

[40]  A. Ashworth,et al.  Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. , 2009, The New England journal of medicine.

[41]  D. Altieri,et al.  Tumor cell dependence on Ran-GTP-directed mitosis. , 2008, Cancer research.

[42]  A. Joe,et al.  Oncogene addiction. , 2008, Cancer research.

[43]  Andy Liaw,et al.  Classification and Regression by randomForest , 2007 .

[44]  Laurence H Pearl,et al.  Three-dimensional structure of the human DNA-PKcs/Ku70/Ku80 complex assembled on DNA and its implications for DNA DSB repair. , 2006, Molecular cell.

[45]  Chris Wiggins,et al.  ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context , 2004, BMC Bioinformatics.

[46]  Thomas Helleday,et al.  Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase , 2005, Nature.

[47]  Alan Ashworth,et al.  Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy , 2005, Nature.

[48]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[49]  Adam A. Margolin,et al.  Reverse engineering of regulatory networks in human B cells , 2005, Nature Genetics.

[50]  T. Hubbard,et al.  A census of human cancer genes , 2004, Nature Reviews Cancer.

[51]  A. Reynolds,et al.  Rational siRNA design for RNA interference , 2004, Nature Biotechnology.

[52]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[53]  Brian D. Ripley,et al.  Modern Applied Statistics with S Fourth edition , 2002 .

[54]  C. Kemp,et al.  Synthetic lethality between mutation in Atm and DNA-PKcs during murine embryogenesis , 2001, Current Biology.

[55]  L. Thompson,et al.  XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. , 1999, Genes & development.