Stratifying Forest Overstory for Improving Effective LAI Estimation Based on Aerial Imagery and Discrete Laser Scanning Data

[1]  Bill Shipley,et al.  Direct and Indirect Relationships Between Specific Leaf Area, Leaf Nitrogen and Leaf Gas Exchange. Effects of Irradiance and Nutrient Supply , 2001 .

[2]  Jing M. Chen,et al.  Mapping forest background reflectivity over North America with Multi-angle Imaging SpectroRadiometer (MISR) data , 2009 .

[3]  Emilio Chuvieco,et al.  Estimation of leaf area index and covered ground from airborne laser scanner (Lidar) in two contrasting forests , 2004 .

[4]  D. Xie,et al.  Review of indirect optical measurements of leaf area index: Recent advances, challenges, and perspectives , 2019, Agricultural and Forest Meteorology.

[5]  J. Dungan,et al.  Generating global Leaf Area Index from Landsat: Algorithm formulation and demonstration , 2012 .

[6]  A. Kuusk,et al.  Impact of understory vegetation on forest canopy reflectance and remotely sensed LAI estimates , 2006 .

[7]  Frédéric Baret,et al.  An Overview of Global Leaf Area Index (LAI): Methods, Products, Validation, and Applications , 2019, Reviews of Geophysics.

[8]  R. Fournier,et al.  Generalizing predictive models of forest inventory attributes using an area-based approach with airborne LiDAR data , 2015 .

[9]  Maggi Kelly,et al.  A New Method for Segmenting Individual Trees from the Lidar Point Cloud , 2012 .

[10]  M. Nilsson Estimation of tree heights and stand volume using an airborne lidar system , 1996 .

[11]  Xiaofei Wang,et al.  Characterizing Tree Spatial Distribution Patterns Using Discrete Aerial Lidar Data , 2020, Remote. Sens..

[12]  Jing M. Chen,et al.  Mapping global seasonal forest background reflectivity with Multi‐angle Imaging Spectroradiometer data , 2014 .

[13]  S. Running,et al.  Forest ecosystem processes at the watershed scale: Sensitivity to remotely-sensed leaf area index estimates , 1993 .

[14]  Lluís Brotons,et al.  Effects of undergrowth clearing on the bird communities of the Northwestern Mediterranean Coppice Holm oak forests , 2006 .

[15]  Miina Rautiainen,et al.  Retrieval of leaf area index for a coniferous forest by inverting a forest reflectance model , 2005 .

[16]  Wuming Zhang,et al.  An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation , 2016, Remote. Sens..

[17]  Steven W. Running,et al.  Remote sensing of temperate coniferous forest leaf area index The influence of canopy closure, understory vegetation and background reflectance , 1990 .

[18]  A. Rango,et al.  Mapping shrub abundance in desert grasslands using geometric-optical modeling and multi-angle remote sensing with CHRIS/Proba , 2006 .

[19]  T. Black,et al.  Foliage area and architecture of plant canopies from sunfleck size distributions , 1992 .

[20]  Jun Zhang,et al.  A robust approach for tree segmentation in deciduous forests using small-footprint airborne LiDAR data , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[21]  A. Ares,et al.  Understory abundance, species diversity and functional attribute response to thinning in coniferous stands , 2010 .

[22]  S. Geisser A predictive approach to the random effect model , 1974 .

[23]  J. Chen,et al.  Defining leaf area index for non‐flat leaves , 1992 .

[24]  Jerzy Neyman,et al.  On a New Class of "Contagious" Distributions, Applicable in Entomology and Bacteriology , 1939 .

[25]  Dar A. Roberts,et al.  Mapping urban forest leaf area index with airborne lidar using penetration metrics and allometry , 2015 .

[26]  A. Huete A soil-adjusted vegetation index (SAVI) , 1988 .

[27]  L. Monika Moskal,et al.  Modeling approaches to estimate effective leaf area index from aerial discrete-return LIDAR , 2009 .

[28]  Sylvain G. Leblanc,et al.  Evaluation of national and global LAI products derived from optical remote sensing instruments over Canada , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[29]  E. Nikinmaa,et al.  Leaf area index is the principal scaling parameter for both gross photosynthesis and ecosystem respiration of Northern deciduous and coniferous forests , 2008 .

[30]  S. Leblanc,et al.  A Shortwave Infrared Modification to the Simple Ratio for LAI Retrieval in Boreal Forests: An Image and Model Analysis , 2000 .

[31]  W. Cohen,et al.  Geographic variability in lidar predictions of forest stand structure in the Pacific Northwest , 2005 .

[32]  W. Oechel,et al.  Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation , 2002 .

[33]  Sylvain G. Leblanc,et al.  Methodology comparison for canopy structure parameters extraction from digital hemispherical photography in boreal forests , 2005 .

[34]  M. Neteler,et al.  Fusion of airborne LiDAR and satellite multispectral data for the estimation of timber volume in the Southern Alps , 2011 .

[35]  Jan Pisek,et al.  Separating overstory and understory leaf area indices for global needleleaf and deciduous broadleaf forests by fusion of MODIS and MISR data , 2016 .

[36]  Xiaohuan Xi,et al.  Estimation of wetland vegetation height and leaf area index using airborne laser scanning data , 2015 .

[37]  J. Hicke,et al.  Global synthesis of leaf area index observations: implications for ecological and remote sensing studies , 2003 .

[38]  Joshua Gray,et al.  Mapping leaf area index using spatial, spectral, and temporal information from multiple sensors , 2011 .

[39]  Frédéric Baret,et al.  Use of spectral analogy to evaluate canopy reflectance sensitivity to leaf optical properties , 1994 .

[40]  Trevor Jones,et al.  Estimation of forest structural and compositional variables using ALS data and multi-seasonal satellite imagery , 2019, Int. J. Appl. Earth Obs. Geoinformation.

[41]  Guang Zheng,et al.  Retrieval of Effective Leaf Area Index in Heterogeneous Forests With Terrestrial Laser Scanning , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[42]  Janne Heiskanen,et al.  Use of airborne lidar for estimating canopy gap fraction and leaf area index of tropical montane forests , 2015 .

[43]  W. Cohen,et al.  Hyperspectral versus multispectral data for estimating leaf area index in four different biomes , 2004 .

[44]  S. Ustin,et al.  Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behavior modeling , 2003 .

[45]  Arko Lucieer,et al.  Evaluating Tree Detection and Segmentation Routines on Very High Resolution UAV LiDAR Data , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[46]  Valerie A. Thomas,et al.  Estimating leaf area index in intensively managed pine plantations using airborne laser scanner data , 2012 .

[47]  A. Hudak,et al.  Mapping snags and understory shrubs for a LiDAR-based assessment of wildlife habitat suitability , 2009 .

[48]  C. Woodcock,et al.  Evaluation of the MODIS LAI algorithm at a coniferous forest site in Finland , 2004 .

[49]  K. Lim,et al.  Lidar remote sensing of biophysical properties of tolerant northern hardwood forests , 2003 .

[50]  Barbara Koch,et al.  Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment , 2010 .

[51]  Y. Knyazikhin,et al.  Validation and intercomparison of global Leaf Area Index products derived from remote sensing data , 2008 .

[52]  S. T. Gower,et al.  Leaf area index of boreal forests: theory, techniques, and measurements , 1997 .

[53]  Mário Caetano,et al.  Effect of the understory on the estimation of coniferous forest leaf area index (LAI) based on remotely sensed data , 1996, Remote Sensing.

[54]  F. Baret,et al.  Potentials and limits of vegetation indices for LAI and APAR assessment , 1991 .

[55]  Michele Dalponte,et al.  Global Airborne Laser Scanning Data Providers Database (GlobALS) - A New Tool for Monitoring Ecosystems and Biodiversity , 2020, Remote. Sens..

[56]  Lorenzo Bruzzone,et al.  A Hierarchical Approach to Three-Dimensional Segmentation of LiDAR Data at Single-Tree Level in a Multilayered Forest , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[57]  Helga Van Miegroet,et al.  Relative Role of Understory and Overstory in Carbon and Nitrogen Cycling in a Southern Appalachian Spruce-Fir Forest , 2007 .

[58]  T. J. Dean,et al.  Estimating individual tree leaf area in loblolly pine plantations using LiDAR-derived measurements of height and crown dimensions , 2005 .

[59]  Sylvain G. Leblanc,et al.  A four-scale bidirectional reflectance model based on canopy architecture , 1997, IEEE Trans. Geosci. Remote. Sens..

[60]  Kaiguang Zhao,et al.  Lidar-based mapping of leaf area index and its use for validating GLOBCARBON satellite LAI product in a temperate forest of the southern USA , 2009 .

[61]  Guang Zheng,et al.  Retrieving Directional Gap Fraction, Extinction Coefficient, and Effective Leaf Area Index by Incorporating Scan Angle Information From Discrete Aerial Lidar Data , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[62]  Miina Rautiainen,et al.  Retrieval of seasonal dynamics of forest understory reflectance in a Northern European boreal forest from MODIS BRDF data , 2012 .

[63]  Zhihao Qin,et al.  Estimation of Crop LAI using hyperspectral vegetation indices and a hybrid inversion method , 2015 .

[64]  D. Roberts,et al.  Estimation of tropical rain forest aboveground biomass with small-footprint lidar and hyperspectral sensors , 2011 .