94-GHz CMOS Power Amplifiers Using Miniature Dual Y-Shaped Combiner With RL Load

This paper reports two four-way 94-GHz power amplifiers (PAs) for radar sensors in 90-nm CMOS technology. The first PA (PA1) comprises a two-stage common-source (CS) cascaded input stage with wideband <inline-formula> <tex-math notation="LaTeX">$\pi $ </tex-math></inline-formula> -match input, interstage and output networks, followed by a two-way CS gain stage using Y-shaped divider and combiner, and a four-way CS output stage using dual Y-shaped divider and combiner. At each branch’s input terminal (i.e., drain terminal of the parallel CS output stage), the low-loss dual Y-shaped combiners can convert the serial RL load into the impedance for optimal output power (<inline-formula> <tex-math notation="LaTeX">${P} _{\mathrm { {out}}}$ </tex-math></inline-formula>) and power-added efficiency (PAE). To enhance power gain and PAE performance, the second PA (PA2) adopts a two-stage positive-feedback CS cascaded input stage using <inline-formula> <tex-math notation="LaTeX">$\lambda $ </tex-math></inline-formula>/2 transmission line. The circuit architecture of the gain and output stages is the same as that of PA1. PA1 achieves power gain of 16, 21, and 12 dB, respectively, at 60, 77, and 94 GHz. In addition, PA1 achieves <inline-formula> <tex-math notation="LaTeX">${P}_{\mathrm { {out}}}$ </tex-math></inline-formula> of 13.2, 12, and 10.6 dBm, respectively, at 60, 77, and 94 GHz. The corresponding peak PAE is 20%, 16%, and 10.2%, respectively, at 60, 77, and 94 GHz. At 94 GHz, PA2 achieves power gain of 20 dB, <inline-formula> <tex-math notation="LaTeX">${P}_{\mathrm { {out}}}$ </tex-math></inline-formula> of 16.8 dBm, and peak PAE of 16.4%. The overall performance of the two CMOS PAs is remarkable in <inline-formula> <tex-math notation="LaTeX">${V}$ </tex-math></inline-formula> -band and <inline-formula> <tex-math notation="LaTeX">${W}$ </tex-math></inline-formula>-band.

[1]  Y.-S. Lin,et al.  Low-power 77-81 GHz CMOS LNA with excellent matching for automotive radars , 2014 .

[2]  Gabriel M. Rebeiz,et al.  Spatially power-combined W-band power amplifier using stacked CMOS , 2014, 2014 IEEE Radio Frequency Integrated Circuits Symposium.

[3]  Andrea Bevilacqua,et al.  A 40–67GHz power amplifier with 13dBm PSAT and 16% PAE in 28 nm CMOS LP , 2014, ESSCIRC 2014 - 40th European Solid State Circuits Conference (ESSCIRC).

[4]  Didier Belot,et al.  A 53-to-68GHz 18dBm power amplifier with an 8-way combiner in standard 65nm CMOS , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[5]  Sudipto Chakraborty,et al.  High-Efficiency E-Band Power Amplifiers and Transmitter Using Gate Capacitance Linearization in a 65-nm CMOS Process , 2017, IEEE Transactions on Circuits and Systems II: Express Briefs.

[6]  K. Maruhashi,et al.  A High Gain 77 GHz Power Amplifier Operating at 0.7 V Based on 90 nm CMOS Technology , 2009, IEEE Microwave and Wireless Components Letters.

[7]  Zhiqun Cheng,et al.  Distributed amplifier using enhancement-mode AlGaN/GaN HEMTs , 2008, 2008 International Conference on Communications, Circuits and Systems.

[8]  C. Jou,et al.  77–110 GHz 65-nm CMOS Power Amplifier Design , 2014, IEEE Transactions on Terahertz Science and Technology.

[9]  Huei Wang,et al.  Millimeter-Wave CMOS Power Amplifiers With High Output Power and Wideband Performances , 2013, IEEE Transactions on Microwave Theory and Techniques.

[10]  Yo-Sheng Lin,et al.  High-Performance On-Chip Transformers With Partial Polysilicon Patterned Ground Shields (PGS) , 2007, IEEE Transactions on Electron Devices.

[11]  Yo-Sheng Lin,et al.  A wideband power amplifier with 13.2 dBm Psat and 19.5% PAE for 60∼94 GHz wireless communication systems in 90 nm CMOS , 2016, 2016 IEEE Radio and Wireless Symposium (RWS).

[12]  Yo-Sheng Lin,et al.  Analysis and Design of CMOS Distributed Amplifier Using Inductively Peaking Cascaded Gain Cell for UWB Systems , 2011, IEEE Transactions on Microwave Theory and Techniques.

[13]  L. Richard Carley,et al.  A 0.7W fully integrated 42GHz power amplifier with 10% PAE in 0.13µm SiGe BiCMOS , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[14]  Peter M. Asbeck,et al.  Multi-Drive Stacked-FET Power Amplifiers at 90 GHz in 45 nm SOI CMOS , 2014, IEEE Journal of Solid-State Circuits.

[15]  Anh-Vu Pham,et al.  A high-gain 60GHz power amplifier with 20dBm output power in 90nm CMOS , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[16]  Ali M. Niknejad,et al.  A 60 GHz Drain-Source Neutralized Wideband Linear Power Amplifier in 28 nm CMOS , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[17]  Wai-Kai Chen,et al.  Transient responses of distributed amplifiers using the m-derived filter sections , 1977 .

[18]  Ping Gui,et al.  A new compact high-efficiency mmWave power amplifier in 65 nm CMOS process , 2015, 2015 IEEE MTT-S International Microwave Symposium.

[19]  John R. Long,et al.  A 58–65 GHz Neutralized CMOS Power Amplifier With PAE Above 10% at 1-V Supply , 2010, IEEE Journal of Solid-State Circuits.

[20]  Andrea Bevilacqua,et al.  A 40–67 GHz Power Amplifier With 13 dBm ${\rm P}_{\rm SAT}$ and 16% PAE in 28 nm CMOS LP , 2015, IEEE Journal of Solid-State Circuits.

[21]  Gabriel M. Rebeiz,et al.  A wideband high-efficiency 79–97 GHz SiGe linear power amplifier with ≫ 90 mW output , 2008, 2008 IEEE Bipolar/BiCMOS Circuits and Technology Meeting.

[22]  Ali M. Niknejad,et al.  A 60 GHz linear wideband power amplifier using cascode neutralization in 28 nm CMOS , 2013, Proceedings of the IEEE 2013 Custom Integrated Circuits Conference.

[23]  Jeng-Han Tsai,et al.  A 69–81 GHz power amplifier using 90nm CMOS technology , 2014, 2014 IEEE 14th Topical Meeting on Silicon Monolithic Integrated Circuits in Rf Systems.

[24]  Kaixue Ma,et al.  A 65 nm CMOS Power Amplifier With Peak PAE above 18.9% From 57 to 66 GHz Using Synthesized Transformer-Based Matching Network , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[25]  Tatsuya Hirose,et al.  60 and 77GHz Power Amplifiers in Standard 90nm CMOS , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[26]  Steven Thijs,et al.  50-to-67GHz ESD-protected power amplifiers in digital 45nm LP CMOS , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[27]  Matteo Bassi,et al.  A 15 GHz-bandwidth 20dBm PSAT power amplifier with 22% PAE in 65nm CMOS , 2015, 2015 IEEE Custom Integrated Circuits Conference (CICC).

[28]  Patrick Reynaert,et al.  14.1 A 0.9V 20.9dBm 22.3%-PAE E-band power amplifier with broadband parallel-series power combiner in 40nm CMOS , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).