40Ar retention in the terrestrial planets.

[1]  Jun Korenaga,et al.  Thermal cracking and the deep hydration of oceanic lithosphere: A key to the generation of plate tectonics? , 2007 .

[2]  D. Cherniak,et al.  Rare earth element diffusion in natural enstatite , 2007 .

[3]  Harry Y. McSween,et al.  Meteorites and the early solar system II , 2006 .

[4]  M. Kurz,et al.  Helium solubility in olivine and implications for high 3He/4He in ocean island basalts , 2005, Nature.

[5]  R. Carlson,et al.  142Nd Evidence for Early (>4.53 Ga) Global Differentiation of the Silicate Earth , 2005, Science.

[6]  S. Jacobsen,et al.  THE Hf-W ISOTOPIC SYSTEM AND THE ORIGIN OF THE EARTH AND MOON , 2005 .

[7]  J. Lassiter,et al.  Role of recycled oceanic crust in the potassium and argon budget of the Earth: Toward a resolution of the “missing argon” problem , 2004 .

[8]  P. Burnard Diffusive fractionation of noble gases and helium isotopes during mantle melting , 2004 .

[9]  K. Bucher,et al.  Serpentinites of the Zermatt‐Saas ophiolite complex and their texture evolution , 2004 .

[10]  S. Kelley,et al.  The ‘zero charge’ partitioning behaviour of noble gases during mantle melting , 2003, Nature.

[11]  E. Watson,et al.  Lattice diffusion of Ar in quartz, with constraints on Ar solubility and evidence of nanopores , 2003 .

[12]  V. Murthy,et al.  Experimental evidence that potassium is a substantial radioactive heat source in planetary cores , 2003, Nature.

[13]  H. Keppler,et al.  Experimental evidence for high noble gas solubilities in silicate melts under mantle pressures , 2002 .

[14]  D. Porcelli,et al.  Models for Distribution of Terrestrial Noble Gases and Evolution of the Atmosphere , 2002 .

[15]  R. Wieler,et al.  Noble Gases : In Geochemistry and Cosmochemistry , 2002 .

[16]  A. Hofmann,et al.  Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites , 2001, Nature.

[17]  D. L. Anderson The Statistics and Distribution of Helium in the Mantle , 2000 .

[18]  G. Davies Geophysically constrained mantle mass flows and the 40Ar budget: a degassed lower mantle? , 1999 .

[19]  T. Shibata,et al.  Solubility of Neon, Argon, Krypton, and Xenon in Binary and Ternary Silicate Systems: A New View on Noble Gas Solubility , 1998 .

[20]  E. R. Engdahl,et al.  Evidence for deep mantle circulation from global tomography , 1997, Nature.

[21]  R. Rudnick,et al.  Nature and composition of the continental crust: A lower crustal perspective , 1995 .

[22]  S. Kelley,et al.  Noble Gas Geochemistry and Cosmochemistry , 1994 .

[23]  S. Hart,et al.  Equilibration during mantle melting: a fractal tree model. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[24]  E. Stolper,et al.  Noble gas solubilities in silicate melts and glasses: New experimental results for argon and the relationship between solubility and ionic porosity , 1993 .

[25]  H. Iwamori A model for disequilibrium mantle melting incorporating melt transport by porous and channel flows , 1993, Nature.

[26]  B. Marty,et al.  Constraints on rare gas partition coefficients from analysis of olivine-glass from a picritic mid-ocean ridge basalt , 1993 .

[27]  K. Farley,et al.  Rare gases in Samoan xenoliths , 1992 .

[28]  M. Spiegelman,et al.  The requirements for chemical disequilibrium during magma migration , 1992 .

[29]  R. Armstrong The persistent myth of crustal growth , 1991 .

[30]  M. Drake,et al.  Solubility and partitioning of Ar in anorthite, diopside, forsterite, spinel, and synthetic basaltic liquids , 1990 .

[31]  M. Brearley,et al.  Solubility of argon in silicate liquids at high pressures , 1989 .

[32]  C. Langmuir,et al.  Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness , 1987 .

[33]  G. Lux The behavior of noble gases in silicate liquids: Solution, diffusion, bubbles and surface effects, with applications to natural samples , 1987 .

[34]  T. Staudacher,et al.  Rare gas systematics: formation of the atmosphere, evolution and structure of the Earth's mantle , 1987 .

[35]  H. Hiyagon,et al.  Partition of noble gases between olivine and basalt melt , 1986 .

[36]  A. Jambon,et al.  Solubility of He, Ne, Ar, Kr and Xe in a basalt melt in the range 1250–1600°C. Geochemical implications , 1986 .

[37]  A. Hofmann,et al.  K, U and Th in mid-ocean ridge basalt glasses and heat production, K/U and K/Rb in the mantle , 1983, Nature.

[38]  M. Kurz,et al.  Helium isotopic systematics of oceanic islands and mantle heterogeneity , 1982, Nature.

[39]  H. Hiyagon,et al.  Noble gas distribution between basalt melt and crystals , 1982 .

[40]  T. Harrison,et al.  Excess40Ar in metamorphic rocks from Broken Hill, New South Wales: implications for40Ar/39Ar age spectra and the thermal history of the region , 1981 .

[41]  R. Batiza,et al.  Relations of noble gas abundances to petrogenesis and magmatic evolution of some oceanic basalts and related differentiated volcanic rocks , 1979 .

[42]  G. B. Dalrymple,et al.  Identification of excess 40Ar by the 40Ar/39Ar age spectrum technique , 1976 .

[43]  D. Green,et al.  EXCESS RADIOGENIC ARGON IN PYROXENES AND ISOTOPIC AGES ON MINERALS FROM NORWEGIAN ECLOGITES , 1964 .