An electrolyte droplet-based low frequency accelerometer based on molecular electronic transducer

This paper reports a liquid-state low frequency micro-accelerometer based on molecular electronic transducer (MET) which senses movement of liquid electrolyte relative to fixed electrodes. The device employs a sub-microliter electrolyte droplet encapsulated in oil as the sensing body and MET electrodes as read-out mechanism. Silicon-based planar micro-fabrication technology is applied to simplify the fabrication and enable mass production. The device achieves sensitivity of 10.8 V/G (G = 9.81 m/s2) at 20 Hz with nearly flat response over the frequency range of 1-40 Hz and a low noise floor of 100 μG/√(Hz) at 20 Hz.