Transport and thermodynamic properties of quasi-two-dimensional purple bronzes A0.9Mo6O17 (A=Na, K)

We report a comparative study of the specific heat, electrical resistivity and thermal conductivity of the quasi-two-dimensional purple bronzes Na$_{0.9}$Mo$_6$O$_{17}$ and K$_{0.9}$Mo$_6$O$_{17}$, with special emphasis on the behavior near their respective charge-density-wave transition temperatures $T_P$. The contrasting behavior of both the transport and the thermodynamic properties near $T_P$ is argued to arise predominantly from the different levels of intrinsic disorder in the two systems. A significant proportion of the enhancement of the thermal conductivity above $T_P$ in Na$_{0.9}$Mo$_6$O$_{17}$, and to a lesser extent in K$_{0.9}$Mo$_6$O$_{17}$, is attributed to the emergence of phason excitations.

[1]  J. Mercure,et al.  Gross violation of the Wiedemann–Franz law in a quasi-one-dimensional conductor , 2011, Nature communications.

[2]  Xiaofeng Xu,et al.  Directional field-induced metallization of quasi-one-dimensional Li0.9Mo6O17. , 2009, Physical review letters.

[3]  Yue Wang,et al.  Low-temperature specific heat of the quasi-two-dimensional charge-density wave compound KMo6O17 , 2006 .

[4]  S. Cheong,et al.  Spin thermal conductivity of the haldane chain compound Y(2)BaNiO(5). , 2006, Physical review letters.

[5]  H. Takagi,et al.  Universality of the Mott–Ioffe–Regel limit in metals , 2004, cond-mat/0404263.

[6]  M. Tian,et al.  Magnetoresistance of quasi-two-dimensional purple bronzes AMo 6 O 17 (A=Na, K, and Tl) , 2002 .

[7]  Shiyan Li,et al.  Magnetoresistance properties of quasi-two-dimensional charge-density wave compounds AMo6O17 (A=Na, K, and Tl) , 2001 .

[8]  Shiyan Li,et al.  Magnetotransport and the Shubnikov-de Haas effect in quasi-two-dimensional purple bronze TlMo6O17 , 2001 .

[9]  J. M. Rodriguez,et al.  Contrast reversal of the charge density wave STM image in purple potassium molybdenum bronze K 0.9 Mo 6 O 17 , 1999 .

[10]  M. Tian,et al.  Thermoelectric power studies in quasi-two-dimensional purple bronzes AMo6O17 (A = Na, K and Tl) , 1997 .

[11]  J. Clack,et al.  Direct Fermi-surface image of hidden nesting for NaMo{sub 6}O{sub 17} and KMo{sub 6}O{sub 17} , 1997 .

[12]  Smith,et al.  Observation of hidden Fermi surface nesting in a two dimensional conductor. , 1996, Physical review letters.

[13]  Smontara,et al.  Contribution of charge-density-wave phase excitations to thermal conductivity below the Peierls transition. , 1993, Physical review. B, Condensed matter.

[14]  Nakamura,et al.  Anisotropic transport properties of single-crystal La2-xSrxCuO4: Evidence for the dimensional crossover. , 1993, Physical review. B, Condensed matter.

[15]  Enric Canadell,et al.  Hidden Fermi Surface Nesting and Charge Density Wave Instability in Low-Dimensional Metals , 1991, Science.

[16]  Kwok Rs,et al.  Thermal conductivity of the charge-density-wave systems K0.3MoO3 and (TaSe4)2I near the Peierls transition. , 1989 .

[17]  M. Greenblatt Molybdenum oxide bronzes with quasi-low-dimensional properties , 1988 .

[18]  M. Whangbo,et al.  Band electronic structure of the purple potassium molybdenum bronze K0.9Mo6O17 , 1987 .

[19]  R. Currat,et al.  Contributions of phasons and of low-energy excitations to the specific heat of the quasi one-dimensional compound (TaSe4)2I , 1986 .

[20]  J. Waszczak,et al.  Quasi-two-dimensional electronic properties of the sodium molybdenum bronze, Na0.9Mo6O17 , 1985 .

[21]  M. Greenblatt,et al.  Crystal growth of alkali metal molybdenum bronzes by a temperature gradient flux technique , 1984 .

[22]  C. Roucau,et al.  Evidence for a charge-density-wave instability in the purple bronze K0·9Mo6O17 , 1984 .

[23]  J. Waszczak,et al.  Quasi two-dimensional electronic properties of the lithium molybdenum bronze, Li0.9Mo6O17 , 1984 .

[24]  C. Schlenker,et al.  Two-dimensional electronic properties of the purple potassium molybdenum bronze K0.9Mo6O17 , 1982 .

[25]  H. Fröhlich On the theory of superconductivity: the one-dimensional case , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.