The single-cell eQTLGen consortium

In recent years, functional genomics approaches combining genetic information with bulk RNA-sequencing data have identified the downstream expression effects of disease-associated genetic risk factors through so-called expression quantitative trait locus (eQTL) analysis. Single-cell RNA-sequencing creates enormous opportunities for mapping eQTLs across different cell types and in dynamic processes, many of which are obscured when using bulk methods. Rapid increase in throughput and reduction in cost per cell now allow this technology to be applied to large-scale population genetics studies. To fully leverage these emerging data resources, we have founded the single-cell eQTLGen consortium (sc-eQTLGen), aimed at pinpointing the cellular contexts in which disease-causing genetic variants affect gene expression. Here, we outline the goals, approach and potential utility of the sc-eQTLGen consortium. We also provide a set of study design considerations for future single-cell eQTL studies.

[1]  S. Hunt,et al.  Genome-Wide Associations of Gene Expression Variation in Humans , 2005, PLoS genetics.

[2]  Yakir A Reshef,et al.  Leveraging molecular quantitative trait loci to understand the genetic architecture of diseases and complex traits , 2018, Nature Genetics.

[3]  Michael J. Gloudemans,et al.  Abundant associations with gene expression complicate GWAS follow-up , 2019, Nature Genetics.

[4]  H. Heyn,et al.  Single-cell transcriptomics unveils gene regulatory network plasticity , 2018, Genome Biology.

[5]  Kelly A. Frazer,et al.  Cellular deconvolution of GTEx tissues powers discovery of disease and cell-type associated regulatory variants , 2020, Nature Communications.

[6]  Xia Yang,et al.  Single cell molecular alterations reveal target cells and pathways of concussive brain injury , 2018, Nature Communications.

[7]  Martin Vingron,et al.  Reconstruction of gene networks using prior knowledge , 2015, BMC Systems Biology.

[8]  Christopher D. Brown,et al.  The GTEx Consortium atlas of genetic regulatory effects across human tissues , 2019, Science.

[9]  Abhijeet R. Sonawane,et al.  Exploring regulation in tissues with eQTL networks , 2017, Proceedings of the National Academy of Sciences.

[10]  T. Lehtimäki,et al.  Integrative approaches for large-scale transcriptome-wide association studies , 2015, Nature Genetics.

[11]  Howard Y. Chang,et al.  Single-cell chromatin accessibility reveals principles of regulatory variation , 2015, Nature.

[12]  M. Stephens,et al.  Genome-wide Efficient Mixed Model Analysis for Association Studies , 2012, Nature Genetics.

[13]  S. Richardson,et al.  Correcting the Mean-Variance Dependency for Differential Variability Testing Using Single-Cell RNA Sequencing Data , 2018, Cell systems.

[14]  R. Satija,et al.  Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression , 2019, Genome Biology.

[15]  E. Topol,et al.  Pharmacogenomics in cardiovascular diseases. , 2003, Progress in cardiovascular diseases.

[16]  Nicola J. Rinaldi,et al.  Genetic effects on gene expression across human tissues , 2017, Nature.

[17]  Aviv Regev,et al.  Intra- and Inter-cellular Rewiring of the Human Colon during Ulcerative Colitis , 2019, Cell.

[18]  Christopher D. Brown,et al.  Integrative Modeling of eQTLs and Cis-Regulatory Elements Suggests Mechanisms Underlying Cell Type Specificity of eQTLs , 2012, PLoS genetics.

[19]  Christopher R. Gignoux,et al.  Human demographic history impacts genetic risk prediction across diverse populations , 2016, bioRxiv.

[20]  A. Gusev,et al.  Probabilistic fine-mapping of transcriptome-wide association studies , 2017, Nature Genetics.

[21]  M. Peters,et al.  Systematic identification of trans eQTLs as putative drivers of known disease associations , 2013, Nature Genetics.

[22]  D. Koller,et al.  Population genomics of human gene expression , 2007, Nature Genetics.

[23]  Andrew C. Adey,et al.  Joint profiling of chromatin accessibility and gene expression in thousands of single cells , 2018, Science.

[24]  Mark Craven,et al.  A review of active learning approaches to experimental design for uncovering biological networks , 2017, PLoS Comput. Biol..

[25]  Gabor T. Marth,et al.  Demographic history and rare allele sharing among human populations , 2011, Proceedings of the National Academy of Sciences.

[26]  Jing Zhao,et al.  The Genetic Architecture of Gene Expression in Peripheral Blood. , 2017, American journal of human genetics.

[27]  M. G. van der Wijst,et al.  Single-cell RNA sequencing identifies cell type-specific cis-eQTLs and co-expression QTLs , 2018, Nature Genetics.

[28]  C. Wijmenga,et al.  Complex nature of SNP genotype effects on gene expression in primary human leucocytes , 2009, BMC Medical Genomics.

[29]  Prashant S. Emani,et al.  Comprehensive functional genomic resource and integrative model for the human brain , 2018, Science.

[30]  R. Ophoff,et al.  Unraveling the Regulatory Mechanisms Underlying Tissue-Dependent Genetic Variation of Gene Expression , 2012, PLoS genetics.

[31]  L. Coin,et al.  Genotype-free demultiplexing of pooled single-cell RNA-seq , 2019, Genome Biology.

[32]  Davis J. McCarthy,et al.  Single-cell RNA-sequencing of differentiating iPS cells reveals dynamic genetic effects on gene expression , 2019, bioRxiv.

[33]  Darren J. Burgess,et al.  Spatial transcriptomics coming of age , 2019, Nature Reviews Genetics.

[34]  Rudiyanto Gunawan,et al.  Optimal design of gene knockout experiments for gene regulatory network inference , 2015, Bioinform..

[35]  Dayanne M. Castro,et al.  Gene regulatory network reconstruction using single-cell RNA sequencing of barcoded genotypes in diverse environments , 2019, bioRxiv.

[36]  Fabian J Theis,et al.  A cellular census of human lungs identifies novel cell states in health and in asthma , 2019, Nature Medicine.

[37]  Chun Jimmie Ye,et al.  Multiplexed droplet single-cell RNA-sequencing using natural genetic variation , 2017, Nature Biotechnology.

[38]  Chun Jimmie Ye,et al.  Intersection of population variation and autoimmunity genetics in human T cell activation , 2014, Science.

[39]  M. Newton,et al.  SCnorm: robust normalization of single-cell RNA-seq data , 2017, Nature Methods.

[40]  Alan M. Kwong,et al.  A reference panel of 64,976 haplotypes for genotype imputation , 2015, Nature Genetics.

[41]  Steve Horvath,et al.  WGCNA: an R package for weighted correlation network analysis , 2008, BMC Bioinformatics.

[42]  T. M. Murali,et al.  Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data , 2019, Nature Methods.

[43]  Melissa J. Davis,et al.  Predicting expression: the complementary power of histone modification and transcription factor binding data , 2014, Epigenetics & Chromatin.

[44]  Fabien C. Lamaze,et al.  Gene-by-environment interactions in urban populations modulate risk phenotypes , 2018, Nature Communications.

[45]  Ie-Bin Lian,et al.  Modeling expression quantitative trait loci in data combining ethnic populations , 2010, BMC Bioinformatics.

[46]  G. Sanguinetti,et al.  scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells , 2018, Nature Communications.

[47]  Chun Jimmie Ye,et al.  Mapping gene regulatory networks of primary CD4+ T cells using single-cell genomics and genome engineering , 2019, bioRxiv.

[48]  Lude Franke,et al.  An integrative approach for building personalized gene regulatory networks for precision medicine , 2018, Genome Medicine.

[49]  Aleksandra A. Kolodziejczyk,et al.  Accounting for technical noise in single-cell RNA-seq experiments , 2013, Nature Methods.

[50]  Fabian J Theis,et al.  PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells , 2019, Genome Biology.

[51]  P. Visscher,et al.  Meta-analysis of genome-wide association studies for height and body mass index in ∼700,000 individuals of European ancestry , 2018, bioRxiv.

[52]  D. Reich,et al.  Principal components analysis corrects for stratification in genome-wide association studies , 2006, Nature Genetics.

[53]  O. Stegle,et al.  DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning , 2016, Genome Biology.

[54]  R. Satija,et al.  Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression , 2019, Genome Biology.

[55]  A. Battle Characterizing the genetic basis of transcriptome diversity through RNA-sequencing , 2013 .

[56]  Igor Mandric,et al.  Optimized design of single-cell RNA sequencing experiments for cell-type-specific eQTL analysis , 2019, Nature Communications.

[57]  Matthew T. Maurano,et al.  Genetic Drivers of Epigenetic and Transcriptional Variation in Human Immune Cells , 2016, Cell.

[58]  F. Vannberg,et al.  GENETICS OF GENE EXPRESSION IN PRIMARY IMMUNE CELLS IDENTIFIES CELL-SPECIFIC MASTER REGULATORS AND ROLES OF HLA ALLELES , 2012, Nature Genetics.

[59]  M. Peters,et al.  Cell specific eQTL analysis without sorting cells , 2014, bioRxiv.

[60]  John C. Marioni,et al.  Single-cell RNA-sequencing of differentiating iPS cells reveals dynamic genetic effects on gene expression , 2020, Nature Communications.

[61]  Martin J. Aryee,et al.  Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility , 2019, Nature Biotechnology.

[62]  Zoltán Kutalik,et al.  Mendelian Randomization integrating GWAS and eQTL data reveals genetic determinants of complex and clinical traits , 2018, bioRxiv.

[63]  Hugues Bersini,et al.  Separation of samples into their constituents using gene expression data , 2001, ISMB.

[64]  J. Aerts,et al.  SCENIC: Single-cell regulatory network inference and clustering , 2017, Nature Methods.

[65]  L. Foster,et al.  Evaluating measures of association for single-cell transcriptomics , 2019, Nature Methods.

[66]  David A. Knowles,et al.  Allele-specific expression reveals interactions between genetic variation and environment , 2015, Nature Methods.

[67]  Luke R. Lloyd-Jones,et al.  The Genetic Architecture of Gene Expression in Peripheral Blood. , 2017, American journal of human genetics.

[68]  Junwen Wang,et al.  Inferring gene regulatory networks by integrating ChIP-seq/chip and transcriptome data via LASSO-type regularization methods. , 2014, Methods.

[69]  C. Wallace,et al.  Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics , 2013, PLoS genetics.

[70]  C. Carlson,et al.  Generalization and Dilution of Association Results from European GWAS in Populations of Non-European Ancestry: The PAGE Study , 2013, PLoS biology.

[71]  Dongdong Lin,et al.  An integrative imputation method based on multi-omics datasets , 2016, BMC Bioinformatics.

[72]  Fabian J Theis,et al.  The Human Cell Atlas , 2017, bioRxiv.

[73]  Thomas M. Keane,et al.  The European Nucleotide Archive in 2017 , 2017, Nucleic Acids Res..

[74]  P. Donnelly,et al.  The UK Biobank resource with deep phenotyping and genomic data , 2018, Nature.

[75]  K. Frazer,et al.  Cellular deconvolution of GTEx tissues powers eQTL studies to discover thousands of novel disease and cell-type associated regulatory variants , 2019, bioRxiv.

[76]  Claudia Angelini,et al.  Understanding gene regulatory mechanisms by integrating ChIP-seq and RNA-seq data: statistical solutions to biological problems , 2014, Front. Cell Dev. Biol..

[77]  W. J. Niessen,et al.  HASE: Framework for efficient high-dimensional association analyses , 2016, Scientific Reports.

[78]  A. Beyer,et al.  Detection and interpretation of expression quantitative trait loci (eQTL). , 2009, Methods.

[79]  E. H. Simpson,et al.  The Interpretation of Interaction in Contingency Tables , 1951 .

[80]  Luyi Tian,et al.  Benchmarking single cell RNA-sequencing analysis pipelines using mixture control experiments , 2019, Nature Methods.

[81]  Luke R. Lloyd-Jones,et al.  Genetic correlations reveal the shared genetic architecture of transcription in human peripheral blood , 2017, Nature Communications.

[82]  A. Zhernakova,et al.  Cohort profile: LifeLines DEEP, a prospective, general population cohort study in the northern Netherlands: study design and baseline characteristics , 2015, BMJ Open.

[83]  Fabian J Theis,et al.  Current best practices in single‐cell RNA‐seq analysis: a tutorial , 2019, Molecular systems biology.

[84]  Aviezer Lifshitz,et al.  MetaCell: analysis of single cell RNA-seq data using k-NN graph partitions , 2018, bioRxiv.

[85]  G. Cochrane,et al.  The International Nucleotide Sequence Database Collaboration , 2011, Nucleic Acids Res..

[86]  K. Martinowich,et al.  Spatial transcriptomics: putting genome-wide expression on the map , 2019, Neuropsychopharmacology.

[87]  Jingyuan Fu,et al.  Cell Specific eQTL Analysis without Sorting Cells , 2014, bioRxiv.

[88]  H. Swerdlow,et al.  Large-scale simultaneous measurement of epitopes and transcriptomes in single cells , 2017, Nature Methods.

[89]  William J. Astle,et al.  Allelic Landscape of Human Blood Cell Trait Variation and Links , 2016 .

[90]  D. Tranchina,et al.  Stochastic mRNA Synthesis in Mammalian Cells , 2006, PLoS biology.

[91]  Luke R. Lloyd-Jones,et al.  Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes , 2018, Nature Communications.

[92]  Y. Kamatani,et al.  Polygenic burdens on cell-specific pathways underlie the risk of rheumatoid arthritis , 2017, Nature Genetics.

[93]  A. Tanay,et al.  MetaCell: analysis of single-cell RNA-seq data using K-nn graph partitions , 2019, Genome Biology.

[94]  Stephanie A. Bien,et al.  Genetic analyses of diverse populations improves discovery for complex traits , 2019, Nature.

[95]  S. Aerts,et al.  Mapping gene regulatory networks from single-cell omics data , 2018, Briefings in functional genomics.

[96]  Ambrose J. Carr,et al.  Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment , 2018, Cell.

[97]  Hideaki Sugawara,et al.  The Sequence Read Archive , 2010, Nucleic Acids Res..

[98]  Hanlee P. Ji,et al.  scPred: Cell type prediction at single-cell resolution , 2018, bioRxiv.

[99]  Biao Zeng,et al.  PolyQTL: Bayesian multiple eQTL detection with control for population structure and sample relatedness , 2019, Bioinform..

[100]  A. Hofman,et al.  Identification of context-dependent expression quantitative trait loci in whole blood , 2016, Nature Genetics.

[101]  Dayanne M. Castro,et al.  Leveraging chromatin accessibility for transcriptional regulatory network inference in T Helper 17 Cells. , 2019, Genome research.

[102]  Jay W. Shin,et al.  C1 CAGE detects transcription start sites and enhancer activity at single-cell resolution , 2018, Nature Communications.

[103]  Giovanni Iacono,et al.  Single-Cell Transcriptomics Unveils Gene Regulatory Network Plasticity , 2018 .

[104]  Marcel J. T. Reinders,et al.  A comparison of automatic cell identification methods for single-cell RNA sequencing data , 2019, Genome Biology.

[105]  Sreeram Kannan,et al.  Towards inferring causal gene regulatory networks from single cell expression Measurements , 2018 .

[106]  Jessica C. Mar,et al.  Evaluating methods of inferring gene regulatory networks highlights their lack of performance for single cell gene expression data , 2018, BMC Bioinformatics.

[107]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[108]  Yvan Saeys,et al.  A comparison of single-cell trajectory inference methods , 2019, Nature Biotechnology.

[109]  N. Hacohen,et al.  Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors , 2017, Science.

[110]  Fabian J Theis,et al.  Decoding the Regulatory Network for Blood Development from Single-Cell Gene Expression Measurements , 2015, Nature Biotechnology.

[111]  Jacob M. Schreiber,et al.  A Genome-wide Framework for Mapping Gene Regulation via Cellular Genetic Screens , 2019, Cell.

[112]  Sina A. Gharib,et al.  Unraveling the polygenic architecture of complex traits using blood eQTL metaanalysis , 2018, bioRxiv.

[113]  I. Nikaido,et al.  Single-cell full-length total RNA sequencing uncovers dynamics of recursive splicing and enhancer RNAs , 2018, Nature Communications.

[114]  Scott M. Williams,et al.  The Missing Diversity in Human Genetic Studies , 2019, Cell.

[115]  J. Marchini,et al.  Genotype imputation for genome-wide association studies , 2010, Nature Reviews Genetics.

[116]  Xuegong Zhang,et al.  SCeQTL: an R package for identifying eQTL from single-cell parallel sequencing data , 2018, bioRxiv.

[117]  Jun S. Liu,et al.  The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans , 2015, Science.

[118]  Fabian J. Theis,et al.  Reconstructing gene regulatory dynamics from high-dimensional single-cell snapshot data , 2015, Bioinform..

[119]  Daniel J. Gaffney,et al.  souporcell: Robust clustering of single cell RNAseq by genotype and ambient RNA inference without reference genotypes , 2019, bioRxiv.

[120]  Fabian J. Theis,et al.  Deep learning does not outperform classical machine learning for cell-type annotation , 2019, bioRxiv.

[121]  D. Koller,et al.  Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 922 individuals , 2013, Genome research.

[122]  Yang I Li,et al.  Discovery and characterization of variance QTLs in human induced pluripotent stem cells , 2018, bioRxiv.

[123]  M. Oosting,et al.  Cytokine gene polymorphisms and the outcome of invasive candidiasis: a prospective cohort study. , 2012, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[124]  Erik Sundström,et al.  RNA velocity of single cells , 2018, Nature.

[125]  N. Schork Personalized medicine: Time for one-person trials , 2015, Nature.

[126]  Dayanne M. Castro,et al.  Gene regulatory network reconstruction using single-cell RNA sequencing of barcoded genotypes in diverse environments , 2020, eLife.

[127]  Drew Seils,et al.  Optimal design , 2007 .