Brodmann's Areas 17 and 18 Brought into Stereotaxic Space—Where and How Variable?

Studies on structural-functional associations in the visual system require precise information on the location and variability of Brodmann's areas 17 and 18. Usually, these studies are based on the Talairach atlas, which does not rely on cytoarchitectonic observations, but on comparisons of macroscopic features in the Talairach brain and Brodmann's drawing. In addition, in this atlas are found only the approximate positions of cytoarchitectonic areas and not the exact borders. We have cytoarchitectonically mapped both areas in 10 human brains and marked their borders in corresponding computerized images. Borders were defined on the basis of quantitative cytoarchitecture and multivariate statistics. In addition to borders of areas 17 and 18, subparcellations within both areas were found. The cytoarchitectonically defined areas were 3-D reconstructed and transferred into the stereotaxic space of the standard reference brain. Surface rendering of the brains revealed high individual variability in size and shape of the areas and in the relationship to the free surface and sulci. Ranges and centers of gravity of both areas were calculated in Talairach coordinates. The positions of areas 17 and 18 in the stereotaxic space differed between the hemispheres. Both areas reached significantly more caudal and medial positions on the left than on the right. Probability maps were created in which the degree of overlap in each stereotaxic position was quantified. These maps of areas 17 and 18 are the first of their kind and contain precise stereotaxic information on both interhemispheric and interindividual differences.

[1]  Smith Ge,et al.  A New Topographical Survey of the Human Cerebral Cortex, being an Account of the Distribution of the Anatomically Distinct Cortical Areas and their Relationship to the Cerebral Sulci. , 1907 .

[2]  C. Economo,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen , 1925 .

[3]  P. Flechsig Meine Myelogenetische Hirnlehre: Mit Biographischer Einleitung , 1927 .

[4]  Karl Pearson,et al.  METHOD OF MOMENTS AND METHOD OF MAXIMUM LIKELIHOOD , 1936 .

[5]  Oswald Bumke,et al.  Handbuch der Neurologie , 1936 .

[6]  Brindley Gs,et al.  The variability of the human striate cortex. , 1972 .

[7]  W. H. Dobelle,et al.  The topography and variability of the primary visual cortex in man. , 1974, Journal of neurosurgery.

[8]  D. Kido,et al.  Asymmetries of the cerebral hemispheres on computed tomograms. , 1978, Journal of computer assisted tomography.

[9]  F. Gallyas Silver staining of myelin by means of physical development. , 1979, Neurological research.

[10]  Karl Zilles,et al.  Estimation of volume fractions in nervous tissue with an image analyzer , 1982, Journal of Neuroscience Methods.

[11]  H. Lange,et al.  Qualitative and quantitative development of the visual cortex in man , 1983 .

[12]  B. Merker Silver staining of cell bodies by means of physical development , 1983, Journal of Neuroscience Methods.

[13]  John H. R. Maunsell,et al.  The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability , 1984, Vision Research.

[14]  H. Frahm,et al.  Comparison of brain structure volumes in insectivora and primates. V. Area striata (AS). , 1984, Journal fur Hirnforschung.

[15]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[16]  E. DeYoe,et al.  Segregation of efferent connections and receptive field properties in visual area V2 of the macaque , 1985, Nature.

[17]  K Zilles,et al.  Quantitative cytoarchitectonics of the posterior cingulate cortex in primates , 1986, The Journal of comparative neurology.

[18]  D H Hubel,et al.  Connections between layer 4B of area 17 and the thick cytochrome oxidase stripes of area 18 in the squirrel monkey , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  W. P. Dixon,et al.  BMPD statistical software manual , 1988 .

[20]  Karl J. Friston,et al.  The colour centre in the cerebral cortex of man , 1989, Nature.

[21]  A. Burkhalter,et al.  Organization of corticocortical connections in human visual cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[22]  J. Kaas Why Does the Brain Have So Many Visual Areas? , 1989, Journal of Cognitive Neuroscience.

[23]  H. Steinmetz,et al.  Craniocerebral topography within the international 10-20 system. , 1989, Electroencephalography and clinical neurophysiology.

[24]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[25]  Lutz Jäncke,et al.  Total surface of temporoparietal intrasylvian cortex: Diverging left-right asymmetries , 1990, Brain and Language.

[26]  R. Tootell,et al.  Molecular differences among neurons reveal an organization of human visual cortex. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[27]  L A Krubitzer,et al.  Cortical connections of MT in four species of primates: Areal, modular, and retinotopic patterns , 1990, Visual Neuroscience.

[28]  小野 道夫,et al.  Atlas of the Cerebral Sulci , 1990 .

[29]  K Zilles,et al.  A quantitative approach to cytoarchitectonics: Analysis of structural inhomogeneities in nervous tissue using an image analyser , 1990, Journal of microscopy.

[30]  S. Clarke,et al.  Occipital cortex in man: Organization of callosal connections, related myelo‐ and cytoarchitecture, and putative boundaries of functional visual areas , 1990, The Journal of comparative neurology.

[31]  Michael Vannier,et al.  Human cortical asymmetries determined with 3D MR technology , 1991, Journal of Neuroscience Methods.

[32]  D. Felleman,et al.  Probing the Primate Visual Cortex: Pathways and Perspectives , 1991 .

[33]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[34]  E. Cabanis,et al.  The Human Brain: Surface, Three-Dimensional Sectional Anatomy and Mri , 1991 .

[35]  Bogdan Dreher,et al.  Neuroanatomy of the Visual Pathways and Their Development , 1991 .

[36]  Charles J. Wysocki,et al.  Hand preference and age in the United States , 1992, Neuropsychologia.

[37]  E. Peterhans,et al.  Functional Organization of Area V2 in the Alert Macaque , 1993, The European journal of neuroscience.

[38]  J. Maunsell,et al.  Visual effects of lesions of cortical area V2 in macaques , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  Jon H. Kaas,et al.  The Organization of Visual Cortex in Primates: Problems, Conclusions, and the Use of Comparative Studies in Understanding the Human Brain , 1993 .

[40]  Richard S. J. Frackowiak,et al.  Functional Separation of Colour and Motion Centres in Human Visual Cortex , 1993 .

[41]  B. Gulyás,et al.  Functional Organization of the Human Visual Cortex , 1993 .

[42]  Leslie G. Ungerleider,et al.  The modular organization of projections from areas V1 and V2 to areas V4 and TEO in macaques , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  A. Galaburda,et al.  Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. , 1993, Cerebral cortex.

[44]  T. Schormann,et al.  Alignment of 3‐D brain data sets originating from MR and histology , 1993 .

[45]  A. Schleicher,et al.  Cyto- and Myeloarchitecture of Human Visual Cortex and the Periodical GABAA Receptor Distribution , 1993 .

[46]  M I Miller,et al.  Mathematical textbook of deformable neuroanatomies. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[47]  S. Zeki A vision of the brain , 1993 .

[48]  M. Wong-Riley,et al.  Cytochrome oxidase in the human visual cortex: Distribution in the developing and the adult brain , 1993, Visual Neuroscience.

[49]  Leslie G. Ungerleider,et al.  The functional organization of human extrastriate cortex: a PET-rCBF study of selective attention to faces and locations , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  K. Zilles,et al.  Brain atlases - a new research tool , 1994, Trends in Neurosciences.

[51]  R. Rabbitt,et al.  3D brain mapping using a deformable neuroanatomy. , 1994, Physics in medicine and biology.

[52]  P E Roland,et al.  Processing and Analysis of Form, Colour and Binocular Disparity in the Human Brain: Functional Anatomy by Positron Emission Tomography , 1994, The European journal of neuroscience.

[53]  S. Clarke,et al.  Modular Organization of Human Extrastriate Visual Cortex: Evidence from Cytochrome Oxidase Pattern in Normal and Macular Degeneration Cases , 1994, The European journal of neuroscience.

[54]  Arthur W. Toga,et al.  A Probabilistic Atlas of the Human Brain: Theory and Rationale for Its Development The International Consortium for Brain Mapping (ICBM) , 1995, NeuroImage.

[55]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[56]  Leslie G. Ungerleider Functional Brain Imaging Studies of Cortical Mechanisms for Memory , 1995, Science.

[57]  D. Ts'o,et al.  Visual topography in primate V2: multiple representation across functional stripes , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[58]  R. Tootell,et al.  Anatomical evidence for MT and additional cortical visual areas in humans. , 1995, Cerebral cortex.

[59]  J. Kaas Human Visual Cortex: Progress and puzzles , 1995, Current Biology.

[60]  Richard S. J. Frackowiak,et al.  Retinotopic Maps in Human Prestriate Visual Cortex: The Demarcation of Areas V2 and V3 , 1995, NeuroImage.

[61]  R. Malach,et al.  Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[62]  G Schlaug,et al.  Corpus callosum and brain volume in women and men , 1995, Neuroreport.

[63]  A. Schleicher,et al.  Mapping of human and macaque sensorimotor areas by integrating architectonic, transmitter receptor, MRI and PET data. , 1995, Journal of anatomy.

[64]  J. W. Lewis,et al.  Two rules for callosal connectivity in striate cortex of the rat , 1995, The Journal of comparative neurology.

[65]  Karl Zilles,et al.  Statistics of deformations in histology and application to improved alignment with MRI , 1995, IEEE Trans. Medical Imaging.

[66]  R. Andersen,et al.  Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[67]  Karl Zilles,et al.  A New Approach to Fast Elastic Alignment with Applications to Human Brain , 1996, VBC.

[68]  Leslie G. Ungerleider,et al.  Effect of task difficulty on cerebral blood flow during perceptual matching of faces , 1996, Human brain mapping.

[69]  A. Schleicher,et al.  Asymmetry in the Human Motor Cortex and Handedness , 1996, NeuroImage.

[70]  A. Schleicher,et al.  Two different areas within the primary motor cortex of man , 1996, Nature.

[71]  A. Schleicher,et al.  Structural Asymmetries in the Human Forebrain and the Forebrain of Non-human Primates and Rats , 1996, Neuroscience & Biobehavioral Reviews.

[72]  J. Kaas,et al.  Topographic patterns of V2 cortical connections in macaque monkeys , 1996, The Journal of comparative neurology.

[73]  E. DeYoe,et al.  Mapping striate and extrastriate visual areas in human cerebral cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[74]  C C Wood,et al.  Retinotopic organization of human visual cortex: departures from the classical model. , 1996, Cerebral cortex.

[75]  J. Haxby,et al.  Functional Magnetic Resonance Imaging of Human Visual Cortex during Face Matching: A Comparison with Positron Emission Tomography , 1996, NeuroImage.

[76]  Karl Zilles,et al.  The Developing European Computerized Human Brain Database for All Imaging Modalities , 1996, NeuroImage.

[77]  K Amunts,et al.  Quantitative analysis of sulci in the human cerebral cortex: Development, regional heterogeneity, gender difference, asymmetry, intersubject variability and cortical architecture , 1997, Human brain mapping.

[78]  A. Dale,et al.  Functional Analysis of V3A and Related Areas in Human Visual Cortex , 1997, The Journal of Neuroscience.

[79]  J. Olavarria,et al.  The global pattern of cytochrome oxidase stripes in visual area V2 of the macaque monkey. , 1997, Cerebral cortex.

[80]  Karl Zilles,et al.  Postnatal development of interhemispheric asymmetry in the cytoarchitecture of human area 4 , 1997, Anatomy and Embryology.

[81]  C. W. Picanço-Diniz,et al.  NADPH-diaphorase activity in area 17 of the squirrel monkey visual cortex: neuropil pattern, cell morphology and laminar distribution. , 1997, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[82]  G. Elston,et al.  The second visual area in the marmoset monkey: Visuotopic organisation, magnification factors, architectonical boundaries, and modularity , 1997, The Journal of comparative neurology.

[83]  Leslie G. Ungerleider,et al.  Cortical projections of area V2 in the macaque. , 1997, Cerebral cortex.

[84]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[85]  Karl Zilles,et al.  Limitations of the principal-axes theory , 1997, IEEE Transactions on Medical Imaging.

[86]  T Schormann,et al.  Three‐Dimensional linear and nonlinear transformations: An integration of light microscopical and MRI data , 1998, Human brain mapping.

[87]  A. Toga,et al.  Cortical variability and asymmetry in normal aging and Alzheimer's disease. , 1998, Cerebral cortex.

[88]  K. Zilles,et al.  Structural divisions and functional fields in the human cerebral cortex 1 Published on the World Wide Web on 20 February 1998. 1 , 1998, Brain Research Reviews.

[89]  B. Gulyás,et al.  Functional and anatomical delineation of human visual areas: a multiple-criteria approach , 1998, NeuroImage.

[90]  K. Amunts,et al.  Cytoarchitectonic Definition of Broca's Region and it's Role in Functions Different from Speech , 1998, NeuroImage.

[91]  Katrin Amunts,et al.  An observer-independent cytoarchitectonic mapping of the human cortex using a stereological approach , 1998 .

[92]  P. Fox,et al.  Intersubject variability of functional areas in the human visual cortex , 1998, Human brain mapping.

[93]  N. Makris,et al.  Gyri of the human neocortex: an MRI-based analysis of volume and variance. , 1998, Cerebral cortex.

[94]  W. Singer,et al.  The constructive nature of vision: direct evidence from functional magnetic resonance imaging studies of apparent motion and motion imagery , 1998, The European journal of neuroscience.

[95]  G. Elston,et al.  Morphological variation of layer III pyramidal neurones in the occipitotemporal pathway of the macaque monkey visual cortex. , 1998, Cerebral cortex.

[96]  R. Hari,et al.  Activation of the human occipital and parietal cortex by pattern and luminance stimuli: neuromagnetic measurements. , 1998, Cerebral cortex.

[97]  A. C. Evans,et al.  Quantification of the variability of human area V5/MT in relation to the sulcal pattern in the parieto–temporo–occipital cortex: a new anatomical landmark , 1998, NeuroImage.

[98]  A. Schleicher,et al.  Broca's region revisited: Cytoarchitecture and intersubject variability , 1999, The Journal of comparative neurology.

[99]  P. Morosan,et al.  Observer-Independent Method for Microstructural Parcellation of Cerebral Cortex: A Quantitative Approach to Cytoarchitectonics , 1999, NeuroImage.

[100]  K. Amunts,et al.  Interhemispheric asymmetry of the human motor cortex related to handedness and gender , 2000, Neuropsychologia.