Multiple solutions for eigenvalue problems involving an indefinite potential and with ( p 1 ( x ) , p 2 ( x ) ) balanced growth

In this paper we are concerned with the study of the spectrum for a class of eigenvalue problems driven by two non-homogeneous differential operators with different variable growth and an indefinite potential in the following form −div [ H(x, |∇u|)∇u + I(x, |∇u|)∇u ] + V (x)|u|u = = λ ( |u|1 + |u|2 ) u in Ω, which is subjected to Dirichlet boundary condition. The proofs rely on variational arguments and they consist in finding two Rayleigh-type quotients, which lead us to an unbounded continuous spectrum on one side, and the nonexistence of the eigenvalues on the other.

[1]  Vicentiu D. Rădulescu,et al.  On a p(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{p(x)}$$\end{document}-biharmonic problem with singula , 2017, Zeitschrift für angewandte Mathematik und Physik.

[2]  I. Lasiecka,et al.  Intrinsic decay rates for the energy of a nonlinear viscoelastic equation modeling the vibrations of thin rods with variable density , 2017 .

[3]  Vicentiu D. Rădulescu,et al.  Non-autonomous Eigenvalue Problems with Variable (p1,p2)-Growth , 2017 .

[4]  Dušan D. Repovš,et al.  On a non-homogeneous eigenvalue problem involving a potential: an Orlicz-Sobolev space setting , 2016, 1608.07062.

[5]  G. Mingione,et al.  Calderón–Zygmund estimates and non-uniformly elliptic operators , 2016 .

[6]  Dušan D. Repovš Stationary waves of Schr\"odinger-type equations with variable exponent , 2016, 1602.03301.

[7]  Vicentiu D. Rădulescu Nonlinear elliptic equations with variable exponent: Old and new , 2015 .

[8]  Dušan D. Repovš,et al.  Multiple perturbations of a singular eigenvalue problem , 2015, 1602.06749.

[9]  I. Kim,et al.  Mountain pass type solutions and positivity of the infimum eigenvalue for quasilinear elliptic equations with variable exponents , 2015 .

[10]  G. Mingione,et al.  Bounded Minimisers of Double Phase Variational Integrals , 2015 .

[11]  P. Hästö,et al.  Lebesgue and Sobolev Spaces with Variable Exponents , 2011 .

[12]  M. Mihăilescu,et al.  Concentration phenomena in nonlinear eigenvalue problems with variable exponents and sign-changing potential , 2010 .

[13]  Xianling Fan,et al.  Remarks on eigenvalue problems involving the p(x)-Laplacian , 2009 .

[14]  Paolo Marcellini Regularity and existence of solutions of elliptic equations with p,q-growth conditions , 1991 .

[15]  Paolo Marcellini On the definition and the lower semicontinuity of certain quasiconvex integrals , 1986 .

[16]  Julian Musielak,et al.  Orlicz Spaces and Modular Spaces , 1983 .

[17]  A. Ghanmi,et al.  On the Steklov problem involving the p(x)-Laplacian with indefinite weight , 2017 .

[18]  I. Stîrcu,et al.  Eigenvalue problems for anisotropic equations involving a potential on Orlicz-Sobolev type spaces , 2016 .

[19]  G. Mingione,et al.  Non-autonomous functionals, borderline cases and related function classes , 2016 .

[20]  Yongqiang Fu,et al.  On the removability of isolated singular points for elliptic equations involving variable exponent , 2015 .