A P2P Traffic Detection Method Based on Support Vector Machine

The widely use of P2P (Peer-to-Peer) technology has caused resources take up too much, security risks and other problems, it is necessary to detect and control P2P traffic. After analyzing current P2P detection methods, a new method called TCBDM (Traffic Characters Based Detection Method) is put forward which combines P2P traffic character with support vector machine to detect P2P traffic. By choosing P2P traffic characters which differ from other network traffic, such as Round-Trip Time (RTT), the method creates a SVM classifier, uses a package named LIBSVM to classify P2P traffic in Moore_Set data sets. The result shows that TCBDM can detect P2P traffic effectively; the accuracy could reach 98%.