Differentiable invariant manifolds of nilpotent parabolic points
暂无分享,去创建一个
[1] E. Fontich,et al. Invariant manifolds of parabolic fixed points (II). Approximations by sums of homogeneous functions , 2016, Journal of Differential Equations.
[2] J. Moser. Stable and Random Motions in Dynamical Systems: With Special Emphasis on Celestial Mechanics. , 1973 .
[3] Santiago Ibáñez,et al. Singularities of vector fields on , 1998 .
[4] R. Llave,et al. The parameterization method for one- dimensional invariant manifolds of higher dimensional parabolic fixed points , 2007 .
[5] J. Mondelo,et al. The Parameterization Method for Invariant Manifolds: From Rigorous Results to Effective Computations , 2016 .
[6] Floris Takens,et al. Singularities of vector fields , 1974 .
[7] Jaume Llibre,et al. Oscillatory solutions in the planar restricted three-body problem , 1980 .
[8] Florin Diacu,et al. On the anisotropic Manev problem , 1999 .
[9] E. Fontich. Stable curves asymptotic to a degenerate fixed point , 1999 .
[10] Richard McGehee,et al. A stable manifold theorem for degenerate fixed points with applications to celestial mechanics. , 1973 .
[11] J. Meiss,et al. Mixed dynamics in a parabolic standard map , 2015, 1504.01197.
[12] A. Nunes,et al. Invariant manifolds for a class of parabolic points , 1992 .
[13] R. Canosa,et al. The parameterization method for invariant manifolds II: regularity with respect to parameters , 2002 .
[14] D. Saari,et al. Stable and Random Motions in Dynamical Systems , 1975 .
[15] R. I. Bogdanov. Versal deformations of a singular point of a vector field on the plane in the case of zero eigenvalues , 1975 .
[16] R. Llave,et al. The parameterization method for invariant manifolds III: overview and applications , 2005 .
[17] R. Canosa,et al. The parameterization method for invariant manifolds III: overview and applications , 2003 .
[18] E. Fontich,et al. Invariant manifolds of parabolic fixed points (I). Existence and dependence on parameters , 2016, Journal of Differential Equations.
[19] O. Merino,et al. Local dynamics of planar maps with a non-isolated fixed point exhibiting 1–1 resonance , 2018, Advances in Difference Equations.
[20] F. Borondo,et al. Periodic orbits and the homoclinic tangle in atom-surface chaotic scattering , 1997 .
[21] E. Fontich,et al. Stable manifolds associated to fixed points with linear part equal to identity , 2004 .
[22] Floris Takens,et al. Normal forms for certain singularities of vectorfields , 1973 .
[23] Weinian Zhang,et al. On invariant manifolds and invariant foliations without a spectral gap , 2016 .
[24] Zbigniew Nitecki,et al. Differentiable dynamics;: An introduction to the orbit structure of diffeomorphisms , 1971 .
[25] S. M. Voronin,et al. Analytic classification of germs of conformal mappings (C, 0) → (C, 0) with identity linear part , 1981 .
[26] J. Mondelo,et al. The parameterization method for invariant manifolds , 2016 .
[27] E. Fontich,et al. Gevrey estimates for one dimensional parabolic invariant manifolds of non-hyperbolic fixed points , 2017, 1702.05961.
[28] P. Martín,et al. Oscillatory orbits in the restricted elliptic planar three body problem , 2016 .
[29] Differentiable invariant manifolds for partially hyperbolic tori and a lambda lemma , 2000 .
[30] R. Llave,et al. The parameterization method for invariant manifolds. I: Manifolds associated to non-resonant subspaces , 2003 .
[31] P. Martín,et al. Oscillatory motions for the restricted planar circular three body problem , 2012, 1506.04551.