Differentiable invariant manifolds of nilpotent parabolic points

We consider a map $F$ of class $C^r$ with a fixed point of parabolic type whose differential is not diagonalizable and we study the existence and regularity of the invariant manifolds associated with the fixed point using the parameterization method. Concretely, we show that under suitable conditions on the coefficients of $F$, there exist invariant curves of class $C^r$ away from the fixed point, and that they are analytic when $F$ is analytic. The differentiability result is obtained as an application of the fiber contraction theorem. We also provide an algorithm to compute an approximation of a parameterization of the invariant curves and a normal form of the restricted dynamics of $F$ on them.

[1]  E. Fontich,et al.  Invariant manifolds of parabolic fixed points (II). Approximations by sums of homogeneous functions , 2016, Journal of Differential Equations.

[2]  J. Moser Stable and Random Motions in Dynamical Systems: With Special Emphasis on Celestial Mechanics. , 1973 .

[3]  Santiago Ibáñez,et al.  Singularities of vector fields on , 1998 .

[4]  R. Llave,et al.  The parameterization method for one- dimensional invariant manifolds of higher dimensional parabolic fixed points , 2007 .

[5]  J. Mondelo,et al.  The Parameterization Method for Invariant Manifolds: From Rigorous Results to Effective Computations , 2016 .

[6]  Floris Takens,et al.  Singularities of vector fields , 1974 .

[7]  Jaume Llibre,et al.  Oscillatory solutions in the planar restricted three-body problem , 1980 .

[8]  Florin Diacu,et al.  On the anisotropic Manev problem , 1999 .

[9]  E. Fontich Stable curves asymptotic to a degenerate fixed point , 1999 .

[10]  Richard McGehee,et al.  A stable manifold theorem for degenerate fixed points with applications to celestial mechanics. , 1973 .

[11]  J. Meiss,et al.  Mixed dynamics in a parabolic standard map , 2015, 1504.01197.

[12]  A. Nunes,et al.  Invariant manifolds for a class of parabolic points , 1992 .

[13]  R. Canosa,et al.  The parameterization method for invariant manifolds II: regularity with respect to parameters , 2002 .

[14]  D. Saari,et al.  Stable and Random Motions in Dynamical Systems , 1975 .

[15]  R. I. Bogdanov Versal deformations of a singular point of a vector field on the plane in the case of zero eigenvalues , 1975 .

[16]  R. Llave,et al.  The parameterization method for invariant manifolds III: overview and applications , 2005 .

[17]  R. Canosa,et al.  The parameterization method for invariant manifolds III: overview and applications , 2003 .

[18]  E. Fontich,et al.  Invariant manifolds of parabolic fixed points (I). Existence and dependence on parameters , 2016, Journal of Differential Equations.

[19]  O. Merino,et al.  Local dynamics of planar maps with a non-isolated fixed point exhibiting 1–1 resonance , 2018, Advances in Difference Equations.

[20]  F. Borondo,et al.  Periodic orbits and the homoclinic tangle in atom-surface chaotic scattering , 1997 .

[21]  E. Fontich,et al.  Stable manifolds associated to fixed points with linear part equal to identity , 2004 .

[22]  Floris Takens,et al.  Normal forms for certain singularities of vectorfields , 1973 .

[23]  Weinian Zhang,et al.  On invariant manifolds and invariant foliations without a spectral gap , 2016 .

[24]  Zbigniew Nitecki,et al.  Differentiable dynamics;: An introduction to the orbit structure of diffeomorphisms , 1971 .

[25]  S. M. Voronin,et al.  Analytic classification of germs of conformal mappings (C, 0) → (C, 0) with identity linear part , 1981 .

[26]  J. Mondelo,et al.  The parameterization method for invariant manifolds , 2016 .

[27]  E. Fontich,et al.  Gevrey estimates for one dimensional parabolic invariant manifolds of non-hyperbolic fixed points , 2017, 1702.05961.

[28]  P. Martín,et al.  Oscillatory orbits in the restricted elliptic planar three body problem , 2016 .

[29]  Differentiable invariant manifolds for partially hyperbolic tori and a lambda lemma , 2000 .

[30]  R. Llave,et al.  The parameterization method for invariant manifolds. I: Manifolds associated to non-resonant subspaces , 2003 .

[31]  P. Martín,et al.  Oscillatory motions for the restricted planar circular three body problem , 2012, 1506.04551.