A STRP-ed definition of Structured Tandem Repeats in Proteins.

[1]  E. Derivery,et al.  De novo design of modular peptide-binding proteins by superhelical matching , 2022, bioRxiv.

[2]  A. Kajava,et al.  The Difference in Structural States between Canonical Proteins and Their Isoforms Established by Proteome-Wide Bioinformatics Analysis , 2022, Biomolecules.

[3]  Mitchell R. Vollger,et al.  From telomere to telomere: The transcriptional and epigenetic state of human repeat elements , 2022, Science.

[4]  B. Höcker,et al.  ProtGPT2 is a deep unsupervised language model for protein design , 2022, Nature Communications.

[5]  Ezequiel A. Galpern,et al.  Evolution and folding of repeat proteins , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[6]  P. Bradley,et al.  Design of functionalised circular tandem repeat proteins with longer repeat topologies and enhanced subunit contact surfaces , 2021, Communications Biology.

[7]  Oriol Vinyals,et al.  Highly accurate protein structure prediction with AlphaFold , 2021, Nature.

[8]  Silvio C. E. Tosatto,et al.  “Protein” no longer means what it used to , 2021, Current research in structural biology.

[9]  Mohammed AlQuraishi,et al.  Machine learning in protein structure prediction. , 2021, Current opinion in chemical biology.

[10]  A. Elofsson,et al.  Protein sequence‐to‐structure learning: Is this the end(‐to‐end revolution)? , 2021, Proteins.

[11]  E. Zackai,et al.  ANKRD11 variants: KBG syndrome and beyond , 2021, Clinical genetics.

[12]  Arne Elofsson,et al.  Accurate contact-based modelling of repeat proteins predicts the structure of new repeats protein families , 2021, PLoS Comput. Biol..

[13]  Miguel A Andrade-Navarro,et al.  REP2: A Web Server to Detect Common Tandem Repeats in Protein Sequences. , 2021, Journal of molecular biology.

[14]  D. Barrick,et al.  Analysis of Tandem Repeat Protein Folding Using Nearest-Neighbor Models. , 2021, Annual Review of Biophysics.

[15]  Pablo Mier,et al.  The Role of Low Complexity Regions in Protein Interaction Modes: An Illustration in Huntingtin , 2021, International journal of molecular sciences.

[16]  A. Smit,et al.  The Dfam community resource of transposable element families, sequence models, and genome annotations , 2021, Mobile DNA.

[17]  Silvio C. E. Tosatto,et al.  MobiDB-lite 3.0: fast consensus annotation of intrinsic disorder flavors in proteins , 2020, Bioinform..

[18]  Silvio C. E. Tosatto,et al.  RepeatsDB in 2021: improved data and extended classification for protein tandem repeat structures , 2020, Nucleic Acids Res..

[19]  Radka Svobodová Vareková,et al.  CATH: increased structural coverage of functional space , 2020, Nucleic Acids Res..

[20]  Silvio C. E. Tosatto,et al.  The InterPro protein families and domains database: 20 years on , 2020, Nucleic Acids Res..

[21]  Silvio C. E. Tosatto,et al.  Pfam: The protein families database in 2021 , 2020, Nucleic Acids Res..

[22]  Damiano Piovesan,et al.  A novel approach to investigate the evolution of structured tandem repeat protein families by exon duplication. , 2020, Journal of structural biology.

[23]  Silvio C. E. Tosatto,et al.  Critical assessment of protein intrinsic disorder prediction , 2020, Nature Methods.

[24]  M. Babu,et al.  Amino acid homorepeats in proteins , 2020, Nature Reviews Chemistry.

[25]  Juan Cortés,et al.  Flanking Regions Determine the Structure of the Poly-Glutamine in Huntingtin through Mechanisms Common among Glutamine-Rich Human Proteins. , 2020, Structure.

[26]  A. Elofsson,et al.  A New Census of Protein Tandem Repeats and Their Relationship with Intrinsic Disorder , 2020, Genes.

[27]  C. Ottenheijm,et al.  Nebulin: big protein with big responsibilities , 2020, Journal of Muscle Research and Cell Motility.

[28]  Matt E. Oates,et al.  ‘Why genes in pieces?’—revisited , 2019, Nucleic acids research.

[29]  Silvio C. E. Tosatto,et al.  Disentangling the complexity of low complexity proteins , 2019, Briefings Bioinform..

[30]  Pablo Mier,et al.  Glutamine Codon Usage and polyQ Evolution in Primates Depend on the Q Stretch Length , 2018, Genome biology and evolution.

[31]  Stefan Kochanek,et al.  The cryo-electron microscopy structure of huntingtin , 2018, Nature.

[32]  S. Tosatto,et al.  Editorial for special issue "Proteins with tandem repeats: sequences, structures and functions"☆. , 2017, Journal of Structural Biology.

[33]  Gregorio Alanis-Lobato,et al.  Context characterization of amino acid homorepeats using evolution, position, and order , 2017, Proteins.

[34]  David Baker,et al.  Rational design of alpha-helical tandem repeat proteins with closed architectures , 2015, Nature.

[35]  Doug Barrick,et al.  A Naturally Occurring Repeat Protein with High Internal Sequence Identity Defines a New Class of TPR-like Proteins. , 2015, Structure.

[36]  David Baker,et al.  Exploring the repeat protein universe through computational protein design , 2015, Nature.

[37]  Thierry Mora,et al.  Repeat proteins challenge the concept of structural domains. , 2015, Biochemical Society transactions.

[38]  R. Sharan,et al.  Human protein interaction networks across tissues and diseases , 2015, Front. Genet..

[39]  Herman K. H. Fung,et al.  Cooperative folding of intrinsically disordered domains drives assembly of a strong elongated protein , 2015, Nature Communications.

[40]  M. Winterhalter,et al.  Outer-membrane translocation of bulky small molecules by passive diffusion , 2015, Proceedings of the National Academy of Sciences.

[41]  M. Anisimova,et al.  The evolution and function of protein tandem repeats in plants. , 2015, The New phytologist.

[42]  D. Barrick,et al.  Direct observation of parallel folding pathways revealed using a symmetric repeat protein system. , 2014, Biophysical journal.

[43]  M. Davidson,et al.  Identification of a post-translationally myristoylated autophagy-inducing domain released by caspase cleavage of huntingtin. , 2014, Human Molecular Genetics.

[44]  D. Barrick,et al.  Capping motifs stabilize the leucine‐rich repeat protein PP32 and rigidify adjacent repeats , 2014, Protein science : a publication of the Protein Society.

[45]  O. Gascuel,et al.  Deep Conservation of Human Protein Tandem Repeats within the Eukaryotes , 2014, Molecular biology and evolution.

[46]  Y. Ishikawa,et al.  A molecular ensemble in the rER for procollagen maturation. , 2013, Biochimica et biophysica acta.

[47]  Metaxia Vlassi,et al.  Short tandem repeats in the inhibitory domain of the mineralocorticoid receptor: prediction of a β-solenoid structure , 2013, BMC Structural Biology.

[48]  Laura S Itzhaki,et al.  Tandem-repeat proteins: regularity plus modularity equals design-ability. , 2013, Current opinion in structural biology.

[49]  Andrey V Kajava,et al.  Tandem repeats in proteins: from sequence to structure. , 2012, Journal of structural biology.

[50]  J. Qin,et al.  The evolution of filamin-a protein domain repeat perspective. , 2012, Journal of structural biology.

[51]  Arne Elofsson,et al.  Nebulin: a study of protein repeat evolution. , 2010, Journal of molecular biology.

[52]  Bin Xue,et al.  Protein tandem repeats – the more perfect, the less structured , 2010, The FEBS journal.

[53]  Elizabeth A Komives,et al.  Folding landscapes of ankyrin repeat proteins: experiments meet theory. , 2008, Current opinion in structural biology.

[54]  D. Barrick,et al.  Folding thermodynamics and kinetics of the leucine‐rich repeat domain of the virulence factor Internalin B , 2008, Protein science : a publication of the Protein Society.

[55]  F. Mooi,et al.  The role of peptide loops of the Bordetella pertussis protein P.69 pertactin in antibody recognition. , 2007, Vaccine.

[56]  Xiaojing Ye,et al.  The integrins , 2007, Genome Biology.

[57]  J. Clarke,et al.  Apparent cooperativity in the folding of multidomain proteins depends on the relative rates of folding of the constituent domains , 2006, Proceedings of the National Academy of Sciences.

[58]  Arne Elofsson,et al.  Expansion of Protein Domain Repeats , 2006, PLoS Comput. Biol..

[59]  George D Rose,et al.  The role of introns in repeat protein gene formation. , 2006, Journal of molecular biology.

[60]  Tommi Kajander,et al.  A new folding paradigm for repeat proteins. , 2005, Journal of the American Chemical Society.

[61]  J. Shapiro,et al.  Why repetitive DNA is essential to genome function , 2005, Biological reviews of the Cambridge Philosophical Society.

[62]  Erich E Wanker,et al.  The hunt for huntingtin function: interaction partners tell many different stories. , 2003, Trends in biochemical sciences.

[63]  Doug Barrick,et al.  Limits of cooperativity in a structurally modular protein: response of the Notch ankyrin domain to analogous alanine substitutions in each repeat. , 2002, Journal of molecular biology.

[64]  R. Raines,et al.  Evolution of ribonuclease inhibitor by exon duplication. , 2002, Molecular biology and evolution.

[65]  C. Ponting,et al.  Protein repeats: structures, functions, and evolution. , 2001, Journal of structural biology.

[66]  R. Wierenga,et al.  The TIM‐barrel fold: a versatile framework for efficient enzymes , 2001, FEBS letters.

[67]  W. Makałowski,et al.  Genomic scrap yard: how genomes utilize all that junk. , 2000, Gene.

[68]  B. Kobe,et al.  When protein folding is simplified to protein coiling: the continuum of solenoid protein structures. , 2000, Trends in biochemical sciences.

[69]  M Wilmanns,et al.  Structural evidence for evolution of the beta/alpha barrel scaffold by gene duplication and fusion. , 2000, Science.

[70]  R. Lahue,et al.  Stabilizing Effects of Interruptions on Trinucleotide Repeat Expansions in Saccharomyces cerevisiae , 2000, Molecular and Cellular Biology.

[71]  Tom L. Blundell,et al.  Phosducin induces a structural change in transducin βγ , 1998 .

[72]  G. Gilliland,et al.  Crystal structure of apo-cellular retinoic acid-binding protein type II (R111M) suggests a mechanism of ligand entry. , 1998, Journal of molecular biology.

[73]  R. Lehmann,et al.  The Pumilio protein binds RNA through a conserved domain that defines a new class of RNA-binding proteins. , 1997, RNA.

[74]  J. Deisenhofer,et al.  A structural basis of the interactions between leucine-rich repeats and protein ligands , 1995, Nature.