Developing a generic framework for anomaly detection

[1]  Teri A. Crosby,et al.  How to Detect and Handle Outliers , 1993 .

[2]  Stan Matwin,et al.  Learning When Negative Examples Abound , 1997, ECML.

[3]  Stan Matwin,et al.  Addressing the Curse of Imbalanced Training Sets: One-Sided Selection , 1997, ICML.

[4]  C.A. Coello Coello,et al.  MOPSO: a proposal for multiple objective particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[5]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[6]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[7]  Luiz Eduardo Soares de Oliveira,et al.  Combining different biometric traits with one-class classification , 2009, Signal Process..

[8]  Jesús Alcalá-Fdez,et al.  KEEL Data-Mining Software Tool: Data Set Repository, Integration of Algorithms and Experimental Analysis Framework , 2011, J. Multiple Valued Log. Soft Comput..

[9]  Bartosz Krawczyk,et al.  Combining Diverse One-Class Classifiers , 2012, HAIS.

[10]  Qi Wang,et al.  Online Anomaly Detection in Crowd Scenes via Structure Analysis , 2015, IEEE Transactions on Cybernetics.

[11]  Bartosz Krawczyk,et al.  Selecting locally specialised classifiers for one-class classification ensembles , 2017, Pattern Analysis and Applications.

[12]  Jacek Tabor,et al.  Extreme entropy machines: robust information theoretic classification , 2015, Pattern Analysis and Applications.

[13]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[15]  Arun Ross,et al.  An ensemble of one-class SVMs for fingerprint spoof detection across different fabrication materials , 2016, 2016 IEEE International Workshop on Information Forensics and Security (WIFS).

[16]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  Bartosz Krawczyk,et al.  Dynamic classifier selection for one-class classification , 2016, Knowl. Based Syst..

[18]  William J. Christmas,et al.  An anomaly detection approach to face spoofing detection: A new formulation and evaluation protocol , 2017, 2017 IEEE International Joint Conference on Biometrics (IJCB).

[19]  Xuan Wang,et al.  Over-Sampling Algorithm Based on VAE in Imbalanced Classification , 2018, CLOUD.

[20]  Feiyue Huang,et al.  Unsupervised Domain Adaptation for Face Anti-Spoofing , 2018, IEEE Transactions on Information Forensics and Security.

[21]  Yuan Yuan,et al.  Hyperspectral Anomaly Detection via Discriminative Feature Learning with Multiple-Dictionary Sparse Representation , 2018, Remote. Sens..

[22]  Francisco Herrera,et al.  Instance reduction for one-class classification , 2018, Knowledge and Information Systems.

[23]  Sanjay Chawla,et al.  Anomaly Detection using One-Class Neural Networks , 2018, ArXiv.

[24]  Alexander Binder,et al.  Deep One-Class Classification , 2018, ICML.

[25]  Dejun Mu,et al.  CoDetect: Financial Fraud Detection With Anomaly Feature Detection , 2018, IEEE Access.

[26]  Alan Wee-Chung Liew,et al.  A Novel Online Ensemble Convolutional Neural Networks for Streaming Data , 2019, ICONIP.

[27]  Josef Kittler,et al.  Combining Multiple one-class Classifiers for Anomaly based Face Spoofing Attack Detection , 2019, 2019 International Conference on Biometrics (ICB).

[28]  Giacomo Boracchi,et al.  Online anomaly detection for long-term ECG monitoring using wearable devices , 2019, Pattern Recognit..

[29]  Aruna Tiwari,et al.  Localized Multiple Kernel Learning for Anomaly Detection: One-class Classification , 2018, Knowl. Based Syst..

[30]  Muhammad Awais,et al.  Spoofing Attack Detection by Anomaly Detection , 2019, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[31]  Thomas G. Dietterich,et al.  Deep Anomaly Detection with Outlier Exposure , 2018, ICLR.

[32]  Kate Smith-Miles,et al.  On normalization and algorithm selection for unsupervised outlier detection , 2019, Data Mining and Knowledge Discovery.

[33]  Luis A. Trejo,et al.  m-OCKRA: An Efficient One-Class Classifier for Personal Risk Detection, Based on Weighted Selection of Attributes , 2020, IEEE Access.

[34]  Xinfeng Zhang,et al.  Video anomaly detection and localization using motion-field shape description and homogeneity testing , 2020, Pattern Recognit..

[35]  Josef Kittler,et al.  A Stacking Ensemble for Anomaly Based Client-Specific Face Spoofing Detection , 2020, 2020 IEEE International Conference on Image Processing (ICIP).

[36]  Jing Liu,et al.  Fast sparse coding networks for anomaly detection in videos , 2020, Pattern Recognit..

[37]  Vishal M. Patel,et al.  Anomaly Detection-Based Unknown Face Presentation Attack Detection , 2020, 2020 IEEE International Joint Conference on Biometrics (IJCB).

[38]  Hamida Seba,et al.  A simple graph embedding for anomaly detection in a stream of heterogeneous labeled graphs , 2020, Pattern Recognit..

[39]  Matej Kristan,et al.  Reconstruction by inpainting for visual anomaly detection , 2020, Pattern Recognit..

[40]  J. Kittler,et al.  A Novel Ground Metric for Optimal Transport-Based Chronological Age Estimation. , 2021, IEEE transactions on cybernetics.

[41]  Josef Kittler,et al.  Client-Specific Anomaly Detection for Face Presentation Attack Detection , 2018, ArXiv.

[42]  Liang-Tien Chia,et al.  Deep residual pooling network for texture recognition , 2021, Pattern Recognit..

[43]  Tomas Pfister,et al.  CutPaste: Self-Supervised Learning for Anomaly Detection and Localization , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[44]  Josef Kittler,et al.  Particle Swarm And Pattern Search Optimisation Of An Ensemble Of Face Anomaly Detectors , 2021, 2021 IEEE International Conference on Image Processing (ICIP).

[45]  Haibo Zhang,et al.  Gaussian Distribution Based Oversampling for Imbalanced Data Classification , 2020, IEEE Transactions on Knowledge and Data Engineering.