3D Image Reconstruction from Compton camera data

In this paper, we address analytically and numerically the inversion of the integral transform (\emph{cone} or \emph{Compton} transform) that maps a function on $\mathbb{R}^3$ to its integrals over conical surfaces. It arises in a variety of imaging techniques, e.g. in astronomy, optical imaging, and homeland security imaging, especially when the so called Compton cameras are involved. Several inversion formulas are developed and implemented numerically in $3D$ (the much simpler $2D$ case was considered in a previous publication). An admissibility condition on detectors geometry is formulated, under which all these inversion techniques will work.

[1]  Philip J. Bones,et al.  Towards direct reconstruction from a gamma camera based on Compton scattering , 1994, IEEE Trans. Medical Imaging.

[2]  Jun Kataoka,et al.  Demonstration of three-dimensional imaging based on handheld Compton camera , 2015 .

[3]  R. Marr,et al.  On Two Approaches to 3D Reconstruction in NMR Zeugmatography , 1981 .

[4]  Fatma Terzioglu,et al.  Some inversion formulas for the cone transform , 2015, 1504.00344.

[5]  Gaik Ambartsoumian,et al.  Exact inversion of the conical Radon transform with a fixed opening angle , 2013, 1309.6581.

[6]  Volker Schönefeld Spherical Harmonics , 2019, An Introduction to Radio Astronomy.

[7]  Moritz Allmaras,et al.  Passive Detection of Small Low-Emission Sources: Two-Dimensional Numerical Case Studies , 2016 .

[8]  P. Kuchment,et al.  Detection of small low emission sources - case studies , 2013, 1309.5974.

[9]  Manbir Singh,et al.  An electronically collimated gamma camera for single photon emission computed tomography. Part I: Theoretical considerations and design criteria , 1983 .

[10]  Gaik Ambartsoumian,et al.  Inversion of the V-line Radon transform in a disc and its applications in imaging , 2012, Comput. Math. Appl..

[11]  Mai K. Nguyen,et al.  Radon transforms on a class of cones with fixed axis direction , 2005 .

[12]  Peter Maass,et al.  A mollifier method for linear operator equations of the first kind , 1990 .

[13]  Sunghwan Moon On the determination of a function from its cone transform with fixed central axis , 2015, 1503.07616.

[14]  G. Szegő Polynomials orthogonal on the unit circle , 1939 .

[15]  Markus Haltmeier Exact reconstruction formulas for a Radon transform over cones , 2014 .

[16]  J. M. Nightingale,et al.  Gamma-radiation imaging system based on the Compton effect , 1977 .

[17]  V. Palamodov Reconstructive Integral Geometry , 2004 .

[18]  Paul Goodey,et al.  Centrally symmetric convex bodies and the spherical Radon transform , 1992 .

[19]  P. Funk Über eine geometrische Anwendung der Abelschen Integralgleichung , 1915 .

[20]  Mai K. Nguyen,et al.  New properties of the V-line Radon transform and their imaging applications , 2015 .

[21]  S. G. Gindikin,et al.  Selected Topics in Integral Geometry , 2003 .

[22]  Chang-Yeol Jung,et al.  Inversion formulas for cone transforms arising in application of Compton cameras , 2015 .

[23]  Bruce D. Smith Line-reconstruction from Compton cameras: data sets and a camera design , 2011 .

[24]  Guido Kanschat,et al.  Detecting small low emission radiating sources , 2010, 1012.3373.

[25]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .

[26]  Peter Kuchment,et al.  The Radon Transform and Medical Imaging , 2014, CBMS-NSF regional conference series in applied mathematics.

[27]  P. Funk Über Flächen mit lauter geschlossenen geodätischen Linien , 1913 .

[28]  Sunghwan Moon,et al.  A series formula for inversion of the V-line Radon transform in a disc , 2013, Comput. Math. Appl..

[29]  M. Riplinger,et al.  Numerical inversion of the spherical Radon transform and the cosine transform using the approximate inverse with a special class of locally supported mollifiers , 2013 .

[30]  R. Gardner Geometric Tomography: Parallel X-rays of planar convex bodies , 2006 .

[31]  Per-Olof Persson,et al.  A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..

[32]  R. Carroll,et al.  A Bayesian approach to the detection of small low emission sources , 2011, Inverse problems.

[33]  M. Singh,et al.  An electronically collimated gamma camera for single photon emission computed tomography. Part I: Theoretical considerations and design criteria. , 1983, Medical physics.

[34]  Alfred K. Louis,et al.  Inversion algorithms for the spherical Radon and cosine transform , 2011 .

[35]  Bruce Smith,et al.  Reconstruction methods and completeness conditions for two Compton data models. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[36]  G T Gullberg,et al.  Application of spherical harmonics to image reconstruction for the Compton camera. , 1998, Physics in medicine and biology.

[37]  Mikhail Belkin,et al.  Discrete laplace operator on meshed surfaces , 2008, SCG '08.

[38]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[39]  P. McMullen GEOMETRIC TOMOGRAPHY (Encyclopedia of Mathematics and its Applications 58) , 1997 .

[40]  Voichita Maxim Filtered Backprojection Reconstruction and Redundancy in Compton Camera Imaging , 2014, IEEE Transactions on Image Processing.

[41]  S. Helgason Integral Geometry and Radon Transforms , 2010 .

[42]  John C. Schotland,et al.  Inversion formulas for the broken-ray Radon transform , 2010, Inverse Problems.

[43]  Chang-Yeol Jung,et al.  Exact Inversion of the Cone Transform Arising in an Application of a Compton Camera Consisting of Line Detectors , 2016, SIAM J. Imaging Sci..

[44]  Yulia Nekova Georgieva-Hristova Mathematical problems of thermoacoustic and Compton camera imaging , 2010 .

[45]  B. Rubin Introduction to Radon Transforms: With Elements of Fractional Calculus and Harmonic Analysis , 2015 .