Energy-minimizing splines in manifolds

Variational interpolation in curved geometries has many applications, so there has always been demand for geometrically meaningful and efficiently computable splines in manifolds. We extend the definition of the familiar cubic spline curves and splines in tension, and we show how to compute these on parametric surfaces, level sets, triangle meshes, and point samples of surfaces. This list is more comprehensive than it looks, because it includes variational motion design for animation, and allows the treatment of obstacles via barrier surfaces. All these instances of the general concept are handled by the same geometric optimization algorithm, which minimizes an energy of curves on surfaces of arbitrary dimension and codimension.

[1]  Marc Alexa,et al.  Approximating and Intersecting Surfaces from Points , 2003, Symposium on Geometry Processing.

[2]  Dereck S. Meek,et al.  Constrained interpolation with rational cubics , 2003, Comput. Aided Geom. Des..

[3]  R. Malladi Geometric methods in bio-medical image processing , 2002 .

[4]  R. Fletcher Practical Methods of Optimization , 1988 .

[5]  Helmut Pottmann,et al.  A variational approach to spline curves on surfaces , 2005, Comput. Aided Geom. Des..

[6]  Carlo H. Séquin,et al.  Scale‐Invariant Minimum‐Cost Curves: Fair and Robust Design Implements , 1993, Comput. Graph. Forum.

[7]  Ravi Ramamoorthi,et al.  Fast construction of accurate quaternion splines , 1997, SIGGRAPH.

[8]  Helmut Pottmann,et al.  Geometric design of motions constrained by a contacting surface pair , 2003, Comput. Aided Geom. Des..

[9]  H. Piaggio Differential Geometry of Curves and Surfaces , 1952, Nature.

[10]  P. Crouch,et al.  On the geometry of Riemannian cubic polynomials , 2001 .

[11]  S. Osher,et al.  Motion of curves constrained on surfaces using a level-set approach , 2002 .

[12]  Marc Alexa,et al.  Computing and Rendering Point Set Surfaces , 2003, IEEE Trans. Vis. Comput. Graph..

[13]  Lyle Noakes,et al.  Cubic Splines on Curved Spaces , 1989 .

[14]  Michael Isard,et al.  Active Contours , 2000, Springer London.

[15]  L. Noakes Null cubics and Lie quadratics , 2003 .

[16]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[17]  Shigeo Takahashi,et al.  Variational design of curves and surfaces using multiresolution constraints , 1998, The Visual Computer.

[18]  John F. Hughes,et al.  Smooth interpolation of orientations with angular velocity constraints using quaternions , 1992, SIGGRAPH.

[19]  Gerhard Opfer,et al.  The derivation of cubic splines with obstacles by methods of optimization and optimal control , 1987 .

[20]  G. Sapiro,et al.  Geometric partial differential equations and image analysis [Book Reviews] , 2001, IEEE Transactions on Medical Imaging.

[21]  Erich Hartmann On the curvature of curves and surfaces defined by normalforms , 1999, Comput. Aided Geom. Des..

[22]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[23]  Josef Hoschek,et al.  Fundamentals of computer aided geometric design , 1996 .

[24]  Bert Jüttler,et al.  Kinematics and Animation , 2002, Handbook of Computer Aided Geometric Design.

[25]  Y. Tsai Rapid and accurate computation of the distance function using grids , 2002 .

[26]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[27]  HELMUT POTTMANN,et al.  ALGORITHMS FOR CONSTRAINED MINIMIZATION OF QUADRATIC FUNCTIONS – GEOMETRY AND CONVERGENCE ANALYSIS , .

[28]  Yunjin Lee,et al.  Geometric Snakes for Triangular Meshes , 2002, Comput. Graph. Forum.

[29]  D. Levin,et al.  Mesh-Independent Surface Interpolation , 2004 .

[30]  Peter E. Crouch,et al.  Elastic curves on the sphere , 1994, Adv. Comput. Math..

[31]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[32]  Hongkai Zhao,et al.  A fast sweeping method for Eikonal equations , 2004, Math. Comput..

[33]  Frank Chongwoo Park,et al.  Smooth invariant interpolation of rotations , 1997, TOGS.

[34]  Helmut Pottmann,et al.  The Isophotic Metric and Its Application to Feature Sensitive Morphology on Surfaces , 2004, ECCV.

[35]  John William Neuberger,et al.  Sobolev gradients and differential equations , 1997 .

[36]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[37]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[38]  Markus H. Gross,et al.  Shape modeling with point-sampled geometry , 2003, ACM Trans. Graph..

[39]  D. Schweikert An Interpolation Curve Using a Spline in Tension , 1966 .

[40]  Michael I. Miller,et al.  Dynamic Programming Generation of Curves on Brain Surfaces , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  Peter Schröder,et al.  A multiresolution framework for variational subdivision , 1998, TOGS.

[42]  SapiroGuillermo,et al.  Fast computation of weighted distance functions and geodesics on implicit hyper-surfaces , 2001 .

[43]  Ron Kimmel,et al.  Images as Embedded Maps and Minimal Surfaces: Movies, Color, Texture, and Volumetric Medical Images , 2000, International Journal of Computer Vision.