Aerospace Coolers: A 50-Year Quest for Long-Life Cryogenic Cooling in Space

Cryogenic temperatures are critical to allow infrared, gamma-ray and X-ray detectors to operate with low background noise and high sensitivity. As a result, the world’s aerospace industry has long dreamed of having the means for multiyear cryogenic cooling in space to enable long-life sensors of various forms for scientific, missile defense, and reconnaissance observations. Not long after the first Sputnik was launched into space in October 1957, engineers and scientists were actively seeking means of providing cryogenic cooling for evermore sophisticated and sensitive detectors in a variety of spectral regions. Although both passive cryoradiators and stored cryogens have provided a source of cryogenic cooling for many missions, the consistent dream of scientists and mission planners was always for a mechanical refrigerator that could achieve the temperatures of the coldest cryogens (vastly colder than possible with passive radiators) and have multiyear life without the finite life limitations of stored cryogens. The first cryocoolers in space were short-life Joule–Thomson and Stirling cryocoolers flown on both US and USSR missions around 1970. Since that time, extensive research and development of evermore sophisticated cryocoolers (Stirling, Vuilleumier, Brayton, magnetic, sorption, and pulse tube) has taken place in the world’s aerospace industry. This chapter examines the enormous progress made by the aerospace industry over the past 50 years in developing both cryostats and cryocoolers to enable the widespread use of cryogenic temperatures in space.

[1]  C. Chan Optimal design of gas adsorption refrigerators for cryogenic cooling , 1983 .

[2]  J. J. Breedlove,et al.  Initial Operation of the NICMOS Cryocooler on the Hubble Space Telescope , 2003 .

[3]  David G. Elliott,et al.  Engineering design of the Wide-Field Infrared Explorer (WIRE) , 1994, Optics & Photonics.

[4]  G. Toma,et al.  Miniature Pulse Tube Cooler , 2004 .

[5]  R. G. Ross,et al.  AIRS PFM Pulse Tube Cooler System-Level Performance , 2002 .

[6]  Kimberly Shirey,et al.  Final Qualification and Early On-Orbit Performance of the RHESSI Cryocooler , 2003 .

[7]  N. R. Sewall,et al.  Ricor K506B Cryocooler Performance during the Clementine Mission and Ground Testing: A Status Report , 1994 .

[8]  D. L. Johnson,et al.  On‐Orbit Performance of the TES Pulse Tube Coolers and Instrument — A First Year in Space , 2006 .

[9]  J. Alvarez,et al.  Design and Component Test Performance of an Efficient 4 W, 130 K Sorption Refrigerator , 1990 .

[10]  R. S. Sugimura,et al.  Lessons Learned during the Integration Phase of the NASA IN-STEP Cryo System Experiment , 1995 .

[11]  Aristides T. Serlemitsos,et al.  Adiabatic demagnetization refrigerator for space use , 1990 .

[12]  R. Hopkins,et al.  The space infrared telescope facility (SIRTF) cryogenic telescope assembly (CTA) cryogenic and thermal system , 2004 .

[13]  Peter Shirron,et al.  Development of a cryogen-free continuous ADR for the constellation-X mission , 2004 .

[14]  Greg A. Bell,et al.  CLAES cryostat on-orbit performance versus ground test predictions , 1993, Optics & Photonics.

[15]  G. R. Cunnington,et al.  Thermal performance of multilayer insulations Interim report , 1971 .

[16]  C. K. Chan,et al.  New Mid-Size High Efficiency Pulse Tube Coolers , 1997 .

[17]  B. J. Tomlinson,et al.  High Capacity Two-Stage Pulse Tube Cooler , 2003 .

[18]  Robert F. Boyle,et al.  Overview of NASA space cryocooler programs , 2002 .

[19]  John A. Lipa,et al.  Lambda point experiment in microgravity , 1994 .

[20]  R. Briet,et al.  INTEGRAL Spectrometer Cryostat Design and Performance after 1.5 Years in Orbit , 2005 .

[21]  Robert E. Harris,et al.  Cryo-Cooler Development For Space Flight Applications , 1981, Other Conferences.

[22]  K. Herr,et al.  Mariner Mars 1969 infrared spectrometer: Gas delivery system and Joule-Thomson cryostat , 1973 .

[23]  A. Sherman History, status and future applications of spaceborne cryogenic systems , 1982 .

[24]  T. Nast,et al.  Design And Performance Analysis Of The Claes NE/CO2 Cryostat , 1988, Optics & Photonics.

[25]  J. Delderfield,et al.  Performance of the Oxford miniature stirling cycle refrigerator , 1986 .

[26]  Ronald G. Ross,et al.  TES cryocooler system design and development , 1997 .

[27]  T. C. Nast,et al.  Orbital cryogenic cooling of sensor systems , 1976 .

[28]  D. Harvey,et al.  JAMI Flight Pulse Tube Cooler System , 2003 .

[29]  Thermal uncertainty margins for cryogenic sensor systems , 1991 .

[30]  John Theodore Houghton,et al.  Remote sounding of atmospheric temperature from satellites V. The pressure modulator radiometer for Nimbus F , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[31]  R. G. Ross,et al.  Performance of the AIRS Pulse Tube Coolers and Instrument—A First Year in Space , 2004 .

[32]  Pradeep Bhandari,et al.  Initial test performance of a closed-cycle continuous hydrogen sorption cooler, the Planck sorption breadboard cooler , 2003 .

[33]  B. J. Tomlinson,et al.  Multispectral Thermal Imager (MTI) Space Cryocooler Development, Integration, and Test , 2002 .

[34]  M. Dipirro,et al.  The Superfluid Helium On-Orbit Transfer (Shoot) Flight Experiment , 1988 .

[35]  B. G. Jones,et al.  Qualification of a 4K mechanical cooler for space applications , 1994 .

[36]  James R. Drummond,et al.  MOPITT On-Orbit Stirling Cycle Cooler Performance , 2002 .

[37]  A. Orlowska,et al.  Miniature stirling cycle cooler , 1987 .

[38]  A. Seidel ISO after completing its successful mission , 1999 .

[39]  M. Goldowsky,et al.  A magnetically suspended linearly driven cryogenic refrigerator , 1983 .

[40]  C. Chan,et al.  Demonstration of a High Performance 35 K Pulse Tube Cryocooler , 1995 .

[41]  James Shoemaker,et al.  Space Technology Research Vehicle (STRV)-1 program , 2000, SPIE Optics + Photonics.

[42]  Ronald G. Ross,et al.  Vibration suppression of advanced space cryocoolers: an overview , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[43]  T. C. Nast,et al.  Development of a High Capacity Two-Stage Pulse Tube Cryocooler , 2003 .

[44]  J. C. Smithson,et al.  Refurbishment of the cryogenic coolers for the Skylab earth resources experiment package , 1975 .

[45]  V. N. Bakun,et al.  Space helium refrigerator , 1981 .

[46]  M. Dipirro,et al.  Final Cryogenic Performance Report for the NASA Cosmic Background Explorer (COBE) , 1992 .

[48]  Thomas M. Davis,et al.  Air Force Research Laboratory Cryocooler Technology Development , 2002 .

[49]  Reza Saeidpourazar,et al.  Design and Development of , 2007 .

[50]  R. G. Ross JPL Cryocooler Development and Test Program Overview , 1995 .

[51]  Gianluca Morgante,et al.  Evaluation of hydride compressor elements for the Planck sorption cryocooler , 2002 .

[52]  D. L. Johnson,et al.  Performance Characterization of the TRW 3503 and 6020 Pulse Tube Coolers , 1996 .

[54]  A. L. Johnson Spacecraft borne long life cryogenic refrigeration status and trends , 1983 .

[55]  T. Nast,et al.  Orbital Performance of a Solid Cryogen Cooling System for a Gamma-Ray Detector , 1960 .

[56]  Masakuni Kawada,et al.  Long-Life Cryocooler Development Program for ASTER , 1995 .

[57]  E. J. Williamson,et al.  The stratospheric and mesospheric sounder on Nimbus 7 , 1980, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[58]  P. Mason,et al.  IRAS Cryogenic System Flight Performance Report , 1984 .

[59]  M. G. Gasser,et al.  Refrigeration for Cryogenic Sensors , 1983 .

[60]  T. C. Nast,et al.  Two Years Orbital Performance Summary Of Stirling Cycle Mechanical Refrigerators , 1982, Optics & Photonics.

[61]  Zhou Yi-yu,et al.  The Spatial Infrared Imaging Telescope III , 2005 .

[62]  R. G. Ross,et al.  NASA’s Advanced Cryocooler Technology Development Program (ACTDP) , 2006 .

[63]  R. G. Ross,et al.  STRV Cryocooler Tip Motion Suppression , 1995 .

[64]  E. Tward,et al.  Miniature space pulse tube cryocoolers , 1999 .

[65]  Sub-Kelvin Sorption Coolers for Space Application , 2002 .

[66]  L. G. Naes,et al.  Long-Life Orbital Operation Of Stirling Cycle Mechanical Refrigerators , 1980, Optics & Photonics.

[67]  C. Everitt,et al.  A Superfluid Plug for Space , 1971 .

[68]  Robert R. Clappier,et al.  Precision temperature control of Stirling-cycle cryocoolers , 1994, Defense + Commercial Sensing.

[69]  R. Boyle,et al.  Design and Performance of the HESSI Cryostat , 1999 .

[70]  Masahide Murakami,et al.  On-orbit thermal behaviour of the IRTS cryogenic system , 1996 .

[71]  T. C. Nast Status Of Solid Cryogen Coolers , 1980, Optics & Photonics.

[72]  R. Levenduski,et al.  Flight Demonstration of the Ball Joule-Thomson Cryocooler , 2002 .

[73]  Ronald G. Ross A study of the use of 6K ACTDP cryocoolers for the MIRI instrument on JWST , 2005 .

[74]  G. D. Peskett,et al.  Development of a Small Stirling Cycle Cooler for Spaceflight Applications , 1986 .

[75]  Nicola Rando,et al.  Cryogenics in space - a review of the missions and technologies , 2000 .

[76]  R. Melugin,et al.  Cryogenic optical systems and instruments III , 1988 .

[77]  D. S. Glaister,et al.  Ball Aerospace Next Generation 2-Stage 35 K SB235 Coolers , 2005 .