Guaranteed proofs using interval arithmetic

This paper presents a set of tools for mechanical reasoning of numerical bounds using interval arithmetic. The tools implement two techniques for reducing decorrelation: interval splitting and Taylor's series expansions. Although the tools are designed for the proof assistant system PVS, expertise on PVS is not required. The ultimate goal of the tools is to provide guaranteed proofs of numerical properties with a minimal human-theorem prover interaction.

[1]  Luc Jaulin,et al.  Applied Interval Analysis , 2001, Springer London.

[2]  Nathalie Revol,et al.  Taylor models and floating-point arithmetic: proof that arithmetic operations are validated in COSY , 2005, J. Log. Algebraic Methods Program..

[3]  Donald E. Knuth The Art of Computer Programming 2 / Seminumerical Algorithms , 1971 .

[4]  Guillaume Melquiond,et al.  The Boost Interval Arithmetic Library , 2003 .

[5]  Paolo Montuschi,et al.  Proceedings 17th IEEE Symposium on Computer Arithmetic , 2005 .

[6]  A. Neumaier Interval methods for systems of equations , 1990 .

[7]  Victor Carreño,et al.  Formal Verification of Conflict Detection Algorithms , 2001, CHARME.

[8]  John Harrison,et al.  Floating Point Verification in HOL Light: The Exponential Function , 1997, Formal Methods Syst. Des..

[9]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[10]  Ashish Tiwari,et al.  Invisible formal methods for embedded control systems , 2003, Proc. IEEE.

[11]  J. L. Lions ARIANE 5 Flight 501 Failure: Report by the Enquiry Board , 1996 .

[12]  Munoz Cesar,et al.  Tactical conflict detection and resolution in a 3-d airspace , 2001 .

[13]  R. B. Kearfott,et al.  Interval Computations: Introduction, Uses, and Resources , 2000 .

[14]  Natarajan Shankar,et al.  PVS: A Prototype Verification System , 1992, CADE.

[15]  M. Berz,et al.  TAYLOR MODELS AND OTHER VALIDATED FUNCTIONAL INCLUSION METHODS , 2003 .

[16]  Tommy Färnqvist Number Theory Meets Cache Locality – Efficient Implementation of a Small Prime FFT for the GNU Multiple Precision Arithmetic Library , 2005 .

[17]  Leslie Lamport,et al.  How to Write a Proof , 1995 .

[18]  Guillaume Melquiond,et al.  Generating formally certified bounds on values and round-off errors , 2004 .