Interactive SPH simulation and rendering on the GPU

In this paper we introduce a novel parallel and interactive SPH simulation and rendering method on the GPU using CUDA which allows for high quality visualization. The crucial particle neighborhood search is based on Z-indexing and parallel sorting which eliminates GPU memory overhead due to grid or hierarchical data structures. Furthermore, it overcomes limitations imposed by shading languages allowing it to be very flexible and approaching the practical limits of modern graphics hardware. For visualizing the SPH simulation we introduce a new rendering pipeline. In the first step, all surface particles are efficiently extracted from the SPH particle cloud exploiting the simulation data. Subsequently, a partial and therefore fast distance field volume is rasterized from the surface particles. In the last step, the distance field volume is directly rendered using state-of-the-art GPU raycasting. This rendering pipeline allows for high quality visualization at very high frame rates.

[1]  Markus Hadwiger,et al.  Real‐Time Ray‐Casting and Advanced Shading of Discrete Isosurfaces , 2005, Comput. Graph. Forum.

[2]  Hans-Peter Seidel,et al.  GPU marching cubes on shader model 3.0 and 4.0 , 2007 .

[3]  Renato Pajarola,et al.  Adaptive Sampling and Rendering of Fluids on the GPU , 2008, VG/PBG@SIGGRAPH.

[4]  Renato Pajarola,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2008) , 2022 .

[5]  Leonidas J. Guibas,et al.  Adaptively sampled particle fluids , 2007, ACM Trans. Graph..

[6]  Kei Iwasaki,et al.  GPU-based rendering of point-sampled water surfaces , 2008, The Visual Computer.

[7]  Simon Stegmaier,et al.  A simple and flexible volume rendering framework for graphics-hardware-based raycasting , 2005, Fourth International Workshop on Volume Graphics, 2005..

[8]  Edward Angel,et al.  Fast high accuracy volume rendering , 2004 .

[9]  William E. Lorensen,et al.  Marching cubes: a high resolution 3D surface construction algorithm , 1996 .

[10]  J. Morris Simulating surface tension with smoothed particle hydrodynamics , 2000 .

[11]  Dinesh Manocha,et al.  DiFi: Fast 3D Distance Field Computation Using Graphics Hardware , 2004, Comput. Graph. Forum.

[12]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[13]  Takahiro Harada,et al.  Sliced data structure for particle-based simulations on GPUs , 2007, GRAPHITE '07.

[14]  Kunihiro Chihara,et al.  Particle-Based Fluid Simulation on GPU , 2003 .

[15]  Nelson L. Max,et al.  Optical Models for Direct Volume Rendering , 1995, IEEE Trans. Vis. Comput. Graph..

[16]  James F. Blinn,et al.  A Generalization of Algebraic Surface Drawing , 1982, TOGS.

[17]  R. Pajarola,et al.  Predictive-corrective incompressible SPH , 2009, SIGGRAPH 2009.

[18]  Markus H. Gross,et al.  Algebraic point set surfaces , 2007, ACM Trans. Graph..

[19]  Kun Zhou,et al.  Real-time KD-tree construction on graphics hardware , 2008, SIGGRAPH Asia '08.

[20]  Nina Amenta,et al.  Defining point-set surfaces , 2004, ACM Trans. Graph..

[21]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.

[22]  D. Levin,et al.  Mesh-Independent Surface Interpolation , 2004 .

[23]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[24]  Tomoyuki Nishita,et al.  GPU‐based Fast Ray Casting for a Large Number of Metaballs , 2008, Comput. Graph. Forum.

[25]  Takahiro Harada,et al.  Fast Rendering of Particle-Based Fluid by Utilizing Simulation Data , 2009, Eurographics.

[26]  Markus H. Gross,et al.  Dynamic Sampling and Rendering of Algebraic Point Set Surfaces , 2008, Comput. Graph. Forum.

[27]  Markus Gross,et al.  Point-Based Graphics , 2007 .