A phase-field model for transversely isotropic ferroelectrics

[1]  C. Nan,et al.  Multiferroic Magnetoelectric Composites: Historical Perspective, Status, and Future Directions , 2008, Progress in Advanced Dielectrics.

[2]  D. Kochmann,et al.  Predicting the effective response of bulk polycrystalline ferroelectric ceramics via improved spectral phase field methods , 2017 .

[3]  A. Sridhar,et al.  Homogenization in micro-magneto-mechanics , 2016 .

[4]  J. Schröder,et al.  Algorithmic two-scale transition for magneto-electro-mechanically coupled problems , 2016 .

[5]  J. Seidel Topological Structures in Ferroic Materials , 2016 .

[6]  Anders Logg,et al.  The FEniCS Project Version 1.5 , 2015 .

[7]  John E. Huber,et al.  Scale effects and the formation of polarization vortices in tetragonal ferroelectrics , 2015, 1712.10212.

[8]  R. Müller,et al.  Coordinate‐invariant phase field modeling of ferro‐electrics, part I: Model formulation and single‐crystal simulations , 2015 .

[9]  R. Müller,et al.  Coordinate‐invariant phase field modeling of ferro‐electrics, part II: Application to composites and poly‐crystals , 2015 .

[10]  P. Steinmann,et al.  Phase field simulations of the poling behavior of BaTiO3 nano-scale thin films with SrRuO3 and Au electrodes , 2015 .

[11]  R. Müller,et al.  An invariant formulation for phase field models in ferroelectrics , 2014 .

[12]  C. Miehe,et al.  Dissipative ferroelectricity at finite strains. Variational principles, constitutive assumptions and algorithms , 2014 .

[13]  Christian Miehe,et al.  Computational homogenization in dissipative electro-mechanics of functional materials , 2013 .

[14]  R. Müller,et al.  On the physical interpretation of material parameters in phase field models for ferroelectrics , 2013 .

[15]  M. Kamlah,et al.  Large-signal analysis of typical ferroelectric domain structures using phase-field modeling , 2012 .

[16]  C. Landis,et al.  Multiscale modeling for ferroelectric materials: identification of the phase-field model’s free energy for PZT from atomistic simulations , 2012 .

[17]  S. LynchChristopher,et al.  リラクサ強誘電体8/65/35PLZTとオルセンサイクルを用いる焦電廃熱エネルギー回収 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2012 .

[18]  M. Kamlah,et al.  Multiscale modeling for ferroelectric materials: a transition from the atomic level to phase-field modeling , 2011 .

[19]  Chad M. Landis,et al.  Phase-Field Modeling of Domain Structure Energetics and Evolution in Ferroelectric Thin Films , 2010 .

[20]  A. Bratkovsky,et al.  Vortex polarization states in nanoscale ferroelectric arrays. , 2009, Nano letters.

[21]  Long-Qing Chen,et al.  Phase-field method of phase transitions/domain structures in ferroelectric thin films: A review , 2008 .

[22]  M. Bibes,et al.  Multiferroics: towards a magnetoelectric memory. , 2008, Nature materials.

[23]  Ivan Naumov,et al.  Unusual polarization patterns in flat epitaxial ferroelectric nanoparticles. , 2008, Physical review letters.

[24]  G. Pascoli,et al.  STABILITY OF VORTEX PHASES IN FERROELECTRIC EASY-PLANE NANO-CYLINDERS , 2008, 0802.4164.

[25]  Shi Xue Dou,et al.  Dielectric, magnetic, and magnetotransport properties in Sr doped two-dimensional RE2CoO4 (RE=Pr,Eu) compounds , 2008 .

[26]  Bai-Xiang Xu,et al.  Domain evolution in ferroelectric materials: A continuum phase field model and finite element implementation , 2007 .

[27]  Long-Qing Chen,et al.  Effect of grain orientation and grain size on ferroelectric domain switching and evolution: Phase field simulations , 2007 .

[28]  Chad M. Landis,et al.  Continuum thermodynamics of ferroelectric domain evolution: Theory, finite element implementation, and application to domain wall pinning , 2007 .

[29]  G. Srinivasan,et al.  Ferrite-Piezoelectric Multilayers for Magnetic Field Sensors , 2006, IEEE Sensors Journal.

[30]  Tong-Yi Zhang,et al.  Size effects in epitaxial ferroelectric islands and thin films , 2006 .

[31]  Long-Qing Chen,et al.  Phase-field simulation of polarization switching and domain evolution in ferroelectric polycrystals , 2005 .

[32]  Nicola A. Spaldin,et al.  The Renaissance of Magnetoelectric Multiferroics , 2005, Science.

[33]  K. Bhattacharya,et al.  A computational model of ferroelectric domains. Part II: grain boundaries and defect pinning , 2005 .

[34]  Kaushik Bhattacharya,et al.  A computational model of ferroelectric domains. Part I: model formulation and domain switching , 2005 .

[35]  Chad M. Landis,et al.  Non-linear constitutive modeling of ferroelectrics , 2004 .

[36]  Jörg Schröder,et al.  Invariant formulation of the electromechanical enthalpy function of transversely isotropic piezoelectric materials , 2004 .

[37]  M. Kamlah,et al.  Ferroelectric and ferroelastic piezoceramics – modeling of electromechanical hysteresis phenomena , 2001 .

[38]  Norman A. Fleck,et al.  Multi-axial electrical switching of a ferroelectric: theory versus experiment , 2001 .

[39]  Norman A. Fleck,et al.  A constitutive model for ferroelectric polycrystals , 1999 .

[40]  Christopher S. Lynch,et al.  Ferroelectric/ferroelastic interactions and a polarization switching model , 1995 .

[41]  Günter,et al.  Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals. , 1994, Physical review. B, Condensed matter.

[42]  David A. Payne,et al.  Nanocrystalline barium titanate: Evidence for the absence of ferroelectricity in sol‐gel derived thin‐layer capacitors , 1993 .

[43]  Yuhuan Xu,et al.  Ferroelectric Materials and Their Applications , 2023, Japanese Journal of Applied Physics.

[44]  Gérard A. Maugin,et al.  Continuum Mechanics of Electromagnetic Solids , 1989 .

[45]  G. Arlt,et al.  Dielectric properties of fine‐grained barium titanate ceramics , 1985 .

[46]  A. Cemal Eringen,et al.  On the foundations of electroelastostatics , 1963 .

[47]  R. Toupin The Elastic Dielectric , 1956 .

[48]  A. Hippel Ferroelectricity, Domain Structure, and Phase Transitions of Barium Titanate , 1950 .