A phase-field model for transversely isotropic ferroelectrics
暂无分享,去创建一个
[1] C. Nan,et al. Multiferroic Magnetoelectric Composites: Historical Perspective, Status, and Future Directions , 2008, Progress in Advanced Dielectrics.
[2] D. Kochmann,et al. Predicting the effective response of bulk polycrystalline ferroelectric ceramics via improved spectral phase field methods , 2017 .
[3] A. Sridhar,et al. Homogenization in micro-magneto-mechanics , 2016 .
[4] J. Schröder,et al. Algorithmic two-scale transition for magneto-electro-mechanically coupled problems , 2016 .
[5] J. Seidel. Topological Structures in Ferroic Materials , 2016 .
[6] Anders Logg,et al. The FEniCS Project Version 1.5 , 2015 .
[7] John E. Huber,et al. Scale effects and the formation of polarization vortices in tetragonal ferroelectrics , 2015, 1712.10212.
[8] R. Müller,et al. Coordinate‐invariant phase field modeling of ferro‐electrics, part I: Model formulation and single‐crystal simulations , 2015 .
[9] R. Müller,et al. Coordinate‐invariant phase field modeling of ferro‐electrics, part II: Application to composites and poly‐crystals , 2015 .
[10] P. Steinmann,et al. Phase field simulations of the poling behavior of BaTiO3 nano-scale thin films with SrRuO3 and Au electrodes , 2015 .
[11] R. Müller,et al. An invariant formulation for phase field models in ferroelectrics , 2014 .
[12] C. Miehe,et al. Dissipative ferroelectricity at finite strains. Variational principles, constitutive assumptions and algorithms , 2014 .
[13] Christian Miehe,et al. Computational homogenization in dissipative electro-mechanics of functional materials , 2013 .
[14] R. Müller,et al. On the physical interpretation of material parameters in phase field models for ferroelectrics , 2013 .
[15] M. Kamlah,et al. Large-signal analysis of typical ferroelectric domain structures using phase-field modeling , 2012 .
[16] C. Landis,et al. Multiscale modeling for ferroelectric materials: identification of the phase-field model’s free energy for PZT from atomistic simulations , 2012 .
[17] S. LynchChristopher,et al. リラクサ強誘電体8/65/35PLZTとオルセンサイクルを用いる焦電廃熱エネルギー回収 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2012 .
[18] M. Kamlah,et al. Multiscale modeling for ferroelectric materials: a transition from the atomic level to phase-field modeling , 2011 .
[19] Chad M. Landis,et al. Phase-Field Modeling of Domain Structure Energetics and Evolution in Ferroelectric Thin Films , 2010 .
[20] A. Bratkovsky,et al. Vortex polarization states in nanoscale ferroelectric arrays. , 2009, Nano letters.
[21] Long-Qing Chen,et al. Phase-field method of phase transitions/domain structures in ferroelectric thin films: A review , 2008 .
[22] M. Bibes,et al. Multiferroics: towards a magnetoelectric memory. , 2008, Nature materials.
[23] Ivan Naumov,et al. Unusual polarization patterns in flat epitaxial ferroelectric nanoparticles. , 2008, Physical review letters.
[24] G. Pascoli,et al. STABILITY OF VORTEX PHASES IN FERROELECTRIC EASY-PLANE NANO-CYLINDERS , 2008, 0802.4164.
[25] Shi Xue Dou,et al. Dielectric, magnetic, and magnetotransport properties in Sr doped two-dimensional RE2CoO4 (RE=Pr,Eu) compounds , 2008 .
[26] Bai-Xiang Xu,et al. Domain evolution in ferroelectric materials: A continuum phase field model and finite element implementation , 2007 .
[27] Long-Qing Chen,et al. Effect of grain orientation and grain size on ferroelectric domain switching and evolution: Phase field simulations , 2007 .
[28] Chad M. Landis,et al. Continuum thermodynamics of ferroelectric domain evolution: Theory, finite element implementation, and application to domain wall pinning , 2007 .
[29] G. Srinivasan,et al. Ferrite-Piezoelectric Multilayers for Magnetic Field Sensors , 2006, IEEE Sensors Journal.
[30] Tong-Yi Zhang,et al. Size effects in epitaxial ferroelectric islands and thin films , 2006 .
[31] Long-Qing Chen,et al. Phase-field simulation of polarization switching and domain evolution in ferroelectric polycrystals , 2005 .
[32] Nicola A. Spaldin,et al. The Renaissance of Magnetoelectric Multiferroics , 2005, Science.
[33] K. Bhattacharya,et al. A computational model of ferroelectric domains. Part II: grain boundaries and defect pinning , 2005 .
[34] Kaushik Bhattacharya,et al. A computational model of ferroelectric domains. Part I: model formulation and domain switching , 2005 .
[35] Chad M. Landis,et al. Non-linear constitutive modeling of ferroelectrics , 2004 .
[36] Jörg Schröder,et al. Invariant formulation of the electromechanical enthalpy function of transversely isotropic piezoelectric materials , 2004 .
[37] M. Kamlah,et al. Ferroelectric and ferroelastic piezoceramics – modeling of electromechanical hysteresis phenomena , 2001 .
[38] Norman A. Fleck,et al. Multi-axial electrical switching of a ferroelectric: theory versus experiment , 2001 .
[39] Norman A. Fleck,et al. A constitutive model for ferroelectric polycrystals , 1999 .
[40] Christopher S. Lynch,et al. Ferroelectric/ferroelastic interactions and a polarization switching model , 1995 .
[41] Günter,et al. Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals. , 1994, Physical review. B, Condensed matter.
[42] David A. Payne,et al. Nanocrystalline barium titanate: Evidence for the absence of ferroelectricity in sol‐gel derived thin‐layer capacitors , 1993 .
[43] Yuhuan Xu,et al. Ferroelectric Materials and Their Applications , 2023, Japanese Journal of Applied Physics.
[44] Gérard A. Maugin,et al. Continuum Mechanics of Electromagnetic Solids , 1989 .
[45] G. Arlt,et al. Dielectric properties of fine‐grained barium titanate ceramics , 1985 .
[46] A. Cemal Eringen,et al. On the foundations of electroelastostatics , 1963 .
[47] R. Toupin. The Elastic Dielectric , 1956 .
[48] A. Hippel. Ferroelectricity, Domain Structure, and Phase Transitions of Barium Titanate , 1950 .