Passage through the mammalian gut triggers a phenotypic switch that promotes Candida albicans commensalism

[1]  Yaojun Tong,et al.  White-Opaque Switching in Natural MTLa/α Isolates of Candida albicans: Evolutionary Implications for Roles in Host Adaptation, Pathogenesis, and Sex , 2013, PLoS biology.

[2]  Jessica V. Pierce,et al.  Variation in Candida albicans EFG1 Expression Enables Host-Dependent Changes in Colonizing Fungal Populations , 2012, mBio.

[3]  Marek S. Skrzypek,et al.  The Candida genome database incorporates multiple Candida species: multispecies search and analysis tools with curated gene and protein information for Candida albicans and Candida glabrata , 2011, Nucleic Acids Res..

[4]  Ching-Hsuan Lin,et al.  Defining pheromone-receptor signaling in Candida albicans and related asexual Candida species , 2011, Molecular biology of the cell.

[5]  B. Tuch,et al.  An iron homeostasis regulatory circuit with reciprocal roles in Candida albicans commensalism and pathogenesis. , 2011, Cell host & microbe.

[6]  M. Blackwell The fungi: 1, 2, 3 ... 5.1 million species? , 2011, American journal of botany.

[7]  F. M. De La Vega,et al.  The Transcriptomes of Two Heritable Cell Types Illuminate the Circuit Governing Their Differentiation , 2010, PLoS genetics.

[8]  Victoria Chen,et al.  Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity , 2010, Nature Genetics.

[9]  D. Artis,et al.  Intestinal bacteria and the regulation of immune cell homeostasis. , 2010, Annual review of immunology.

[10]  D. Jenkins,et al.  Carbohydrate digestibility and metabolic effects. , 2007, The Journal of nutrition.

[11]  Arturo Casadevall,et al.  Accidental Virulence, Cryptic Pathogenesis, Martians, Lost Hosts, and the Pathogenicity of Environmental Microbes , 2007, Eukaryotic Cell.

[12]  B. Tuch,et al.  Interlocking Transcriptional Feedback Loops Control White-Opaque Switching in Candida albicans , 2007, PLoS biology.

[13]  B. Hube,et al.  The role of secreted aspartyl proteinases in Candida albicans keratitis. , 2007, Investigative ophthalmology & visual science.

[14]  B. Tuch,et al.  Computational and experimental approaches double the number of known introns in the pathogenic yeast Candida albicans. , 2007, Genome research.

[15]  Nicolas Servant,et al.  Goulphar: rapid access and expertise for standard two-color microarray normalization methods , 2006, BMC Bioinformatics.

[16]  D. Shaw,et al.  Candida albicans Strain Maintenance, Replacement, and Microvariation Demonstrated by Multilocus Sequence Typing , 2006, Journal of Clinical Microbiology.

[17]  Michael R. Seringhaus,et al.  TOS9 Regulates White-Opaque Switching in Candidaalbicans , 2006, Eukaryotic Cell.

[18]  R. Zordan,et al.  Epigenetic properties of white–opaque switching in Candida albicans are based on a self-sustaining transcriptional feedback loop , 2006, Proceedings of the National Academy of Sciences.

[19]  Guanghua Huang,et al.  Bistable expression of WOR1, a master regulator of white–opaque switching in Candida albicans , 2006, Proceedings of the National Academy of Sciences.

[20]  J. Berlin,et al.  The epidemiology and attributable outcomes of candidemia in adults and children hospitalized in the United States: a propensity analysis. , 2005, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[21]  A. Johnson,et al.  Mating in Candida albicans and the search for a sexual cycle. , 2005, Annual review of microbiology.

[22]  Wei Wu,et al.  Increased Virulence and Competitive Advantage of a/α Over a/a or α/α Offspring Conserves the Mating System of Candida albicans , 2005, Genetics.

[23]  S. Noble,et al.  Strains and Strategies for Large-Scale Gene Deletion Studies of the Diploid Human Fungal Pathogen Candida albicans , 2005, Eukaryotic Cell.

[24]  D. Soll,et al.  Increased virulence and competitive advantage of a/alpha over a/a or alpha/alpha offspring conserves the mating system of Candida albicans. , 2005, Genetics.

[25]  R. Kolter,et al.  The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. , 2004, Gene.

[26]  P. T. Magee,et al.  Homozygosity at the MTL locus in clinical strains of Candida albicans: karyotypic rearrangements and tetraploid formation † , 2004, Molecular microbiology.

[27]  M. Fontecave,et al.  Chemistry for an essential biological process: the reduction of ferric iron , 2002, Biometals.

[28]  Michael Wilson Microbial Inhabitants of Humans: The gastrointestinal tract and its indigenous microbiota , 2004 .

[29]  A. Gillum,et al.  Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations , 2004, Molecular and General Genetics MGG.

[30]  R. Simpson,et al.  Physiology and molecular biology of dietary iron absorption. , 2003, Annual review of nutrition.

[31]  A. E. Tsong,et al.  Evolution of a Combinatorial Transcriptional Circuit A Case Study in Yeasts , 2003, Cell.

[32]  S. Challacombe,et al.  Candida albicans Secreted Aspartyl Proteinases in Virulence and Pathogenesis , 2003, Microbiology and Molecular Biology Reviews.

[33]  D. Hartl,et al.  Bayesian analysis of gene expression levels: statistical quantification of relative mRNA level across multiple strains or treatments , 2002, Genome Biology.

[34]  Ronald W. Davis,et al.  Metabolic specialization associated with phenotypic switching in Candida albicans , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[35]  D. Soll,et al.  In Candida albicans, white-opaque switchers are homozygous for mating type. , 2002, Genetics.

[36]  Alexander D. Johnson,et al.  White-Opaque Switching in Candida albicans Is Controlled by Mating-Type Locus Homeodomain Proteins and Allows Efficient Mating , 2002, Cell.

[37]  D. McClish,et al.  Nosocomial bloodstream infections in United States hospitals: a three-year analysis. , 1999, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[38]  J Hacker,et al.  Host‐induced, stage‐specific virulence gene activation in Candida albicans during infection , 1999, Molecular microbiology.

[39]  K. Oldenburg,et al.  Recombination-mediated PCR-directed plasmid construction in vivo in yeast. , 1997, Nucleic acids research.

[40]  P. Angrand,et al.  Different thermostabilities of FLP and Cre recombinases: implications for applied site-specific recombination. , 1996, Nucleic acids research.

[41]  J. Mekalanos,et al.  Use of genetic recombination as a reporter of gene expression. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[42]  F. Odds Candida and candidosis: a review and bibliography. 2nd edition. , 1988 .

[43]  D. Soll,et al.  "White-opaque transition": a second high-frequency switching system in Candida albicans , 1987, Journal of bacteriology.

[44]  Goodman Mj,et al.  Glucosamine synthetase activity of the colonic mucosa in ulcerative colitis and Crohn's disease. , 1977 .

[45]  P. W. Kent,et al.  Glucosamine synthetase activity of the colonic mucosa in ulcerative colitis and Crohn's disease. , 1977, Gut.

[46]  H. G. Drickamer,et al.  The Reduction of Ferric Iron , 1973 .