Molecular diversity and ecology of microbial plankton

The history of microbial evolution in the oceans is probably as old as the history of life itself. In contrast to terrestrial ecosystems, microorganisms are the main form of biomass in the oceans, and form some of the largest populations on the planet. Theory predicts that selection should act more efficiently in large populations. But whether microbial plankton populations harbour organisms that are models of adaptive sophistication remains to be seen. Genome sequence data are piling up, but most of the key microbial plankton clades have no cultivated representatives, and information about their ecological activities is sparse.

[1]  M. Kimura,et al.  On the probability of fixation of mutant genes in a population. , 1962, Genetics.

[2]  J. G. Field,et al.  The Ecological Role of Water-Column Microbes in the Sea* , 1983 .

[3]  S. Giovannoni,et al.  Genetic diversity in Sargasso Sea bacterioplankton , 1990, Nature.

[4]  S. Giovannoni,et al.  Phylogenetic analysis of a natural marine bacterioplankton population by rRNA gene cloning and sequencing , 1991, Applied and environmental microbiology.

[5]  E. Delong,et al.  Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing , 1991, Journal of bacteriology.

[6]  W. Sandine,et al.  Development and application of oligonucleotide probes for identification of Lactococcus lactis subsp. cremoris , 1991, Applied and environmental microbiology.

[7]  J. Bauer,et al.  14C activity of dissolved organic carbon fractions in the north-central Pacific and Sargasso Sea , 1992, Nature.

[8]  A. Davis Novel major archaebacterial group from marine plankton , 1992, Nature.

[9]  E. Delong Archaea in coastal marine environments. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[10]  D. Button,et al.  Viability and Isolation of Marine Bacteria by Dilution Culture: Theory, Procedures, and Initial Results , 1993, Applied and environmental microbiology.

[11]  E. Delong,et al.  Phylogenetic diversity of aggregate‐attached vs. free‐living marine bacterial assemblages , 1993 .

[12]  Robert R. Bidigare,et al.  Seasonal patterns of ocean biogeochemistry at the U.S. JGOFS Bermuda Atlantic time-series study site , 1994 .

[13]  H. Ducklow,et al.  Annual flux of dissolved organic carbon from the euphotic zone in the northwestern Sargasso Sea , 1994, Nature.

[14]  S. Giovannoni,et al.  Genetic comparisons reveal the same unknown bacterial lineages in Atlantic and Pacific bacterioplankton communities , 1995 .

[15]  J. Fuhrman,et al.  Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific Oceans , 1993, Applied and environmental microbiology.

[16]  J. Fuhrman,et al.  Viruses and protists cause similar bacterial mortality in coastal seawater , 1995 .

[17]  S. Giovannoni,et al.  16S rRNA genes reveal stratified open ocean bacterioplankton populations related to the Green Non-Sulfur bacteria. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[18]  S. Giovannoni,et al.  Detection of stratified microbial populations related to Chlorobium and Fibrobacter species in the Atlantic and Pacific oceans , 1996, Applied and environmental microbiology.

[19]  S. Giovannoni,et al.  A novel delta-subdivision proteobacterial lineage from the lower ocean surface layer , 1997, Applied and environmental microbiology.

[20]  S. Giovannoni,et al.  Diversity and depth-specific distribution of SAR11 cluster rRNA genes from marine planktonic bacteria , 1997, Applied and environmental microbiology.

[21]  J. Fuhrman,et al.  Widespread Archaea and novel Bacteria from the deep sea as shown by 16S rRNA gene sequences , 1997 .

[22]  G. Hallegraeff,et al.  Algicidal Effects of a Novel MarinePseudoalteromonas Isolate (Class Proteobacteria, Gamma Subdivision) on Harmful Algal Bloom Species of the GeneraChattonella, Gymnodinium, andHeterosigma , 1998, Applied and Environmental Microbiology.

[23]  Lisa R. Moore,et al.  Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes , 1998, Nature.

[24]  Dennis A. Hansell,et al.  Biogeochemistry of total organic carbon and nitrogen in the Sargasso Sea , 1999 .

[25]  P. Falkowski,et al.  Bacterial photosynthesis in surface waters of the open ocean , 2000, Nature.

[26]  Rappé,et al.  Phylogenetic comparisons of a coastal bacterioplankton community with its counterparts in open ocean and freshwater systems. , 2000, FEMS microbiology ecology.

[27]  T. Thomas,et al.  Phylogenetic relationship and antifouling activity of bacterial epiphytes from the marine alga Ulva lactuca. , 2000, Environmental microbiology.

[28]  E. Koonin,et al.  Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. , 2000, Science.

[29]  R. Amann,et al.  Changes in community composition during dilution cultures of marine bacterioplankton as assessed by flow cytometric and molecular biological techniques. , 2000, Environmental microbiology.

[30]  R. Amann,et al.  Linking the composition of bacterioplankton to rapid turnover of dissolved dimethylsulphoniopropionate in an algal bloom in the North Sea. , 2001, Environmental microbiology.

[31]  F. Azam,et al.  Oceanography: Sea snow microcosms , 2001, Nature.

[32]  E. Delong,et al.  Archaeal dominance in the mesopelagic zone of the Pacific Ocean , 2001, Nature.

[33]  J. Swings,et al.  Sphingomonas alaskensis sp. nov., a dominant bacterium from a marine oligotrophic environment. , 2001, International journal of systematic and evolutionary microbiology.

[34]  Marion Leclerc,et al.  Proteorhodopsin phototrophy in the ocean , 2001, Nature.

[35]  Robert Huber,et al.  Prokaryotic phylogenetic diversity and corresponding geochemical data of the brine-seawater interface of the Shaban Deep, Red Sea. , 2002, Environmental microbiology.

[36]  D. Kirchman The ecology of Cytophaga-Flavobacteria in aquatic environments. , 2002, FEMS microbiology ecology.

[37]  R. Benner Chapter 3 – Chemical Composition and Reactivity , 2002 .

[38]  Dennis A. Hansell,et al.  Biogeochemistry of marine dissolved organic matter , 2002 .

[39]  Dennis A. Hansell,et al.  Effect of nutrient amendments on bacterioplankton production, community structure, and DOC utilization in the northwestern Sargasso Sea , 2002, Aquatic Microbial Ecology.

[40]  S. Giovannoni,et al.  High-Throughput Methods for Culturing Microorganisms in Very-Low-Nutrient Media Yield Diverse New Marine Isolates , 2002, Applied and Environmental Microbiology.

[41]  William A. Siebold,et al.  SAR11 clade dominates ocean surface bacterioplankton communities , 2002, Nature.

[42]  F. Cohan What are bacterial species? , 2002, Annual review of microbiology.

[43]  Sallie W. Chisholm,et al.  Resolution of Prochlorococcus and Synechococcus Ecotypes by Using 16S-23S Ribosomal DNA Internal Transcribed Spacer Sequences , 2002, Applied and Environmental Microbiology.

[44]  R. Cavicchioli,et al.  Life under Nutrient Limitation in Oligotrophic Marine Environments: An Eco/Physiological Perspective of Sphingopyxis alaskensis (formerly Sphingomonas alaskensis) , 2003, Microbial Ecology.

[45]  J. Waterbury,et al.  Characterization of Trichodesmium spp. by Genetic Techniques , 2002, Applied and Environmental Microbiology.

[46]  S. Giovannoni,et al.  Cultivation of the ubiquitous SAR11 marine bacterioplankton clade , 2002, Nature.

[47]  R. Amann,et al.  High Rate of Uptake of Organic Nitrogen Compounds by Prochlorococcus Cyanobacteria as a Key to Their Dominance in Oligotrophic Oceanic Waters , 2003, Applied and Environmental Microbiology.

[48]  Jonathan P Zehr,et al.  Nitrogenase gene diversity and microbial community structure: a cross-system comparison. , 2003, Environmental microbiology.

[49]  Stefan Schouten,et al.  Bicarbonate uptake by marine Crenarchaeota. , 2003, FEMS microbiology letters.

[50]  Mot Kimuraz,et al.  ON THE PROBABILITY OF FIXATION OF MUTANT GENES IN A POPULATION’ , 2003 .

[51]  Oded Béjà,et al.  Diversification and spectral tuning in marine proteorhodopsins , 2003, The EMBO journal.

[52]  Fei-xue Fu,et al.  Factors affecting N fixation by the cyanobacterium Trichodesmium sp. GBRTRLI101. , 2003, FEMS microbiology ecology.

[53]  Manesh Shah,et al.  Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation , 2003, Nature.

[54]  S. Giovannoni,et al.  Lentisphaera araneosa gen. nov., sp. nov, a transparent exopolymer producing marine bacterium, and the description of a novel bacterial phylum, Lentisphaerae. , 2004, Environmental microbiology.

[55]  S. Giovannoni,et al.  Cultivation and Growth Characteristics of a Diverse Group of Oligotrophic Marine Gammaproteobacteria , 2004, Applied and Environmental Microbiology.

[56]  O. White,et al.  Environmental Genome Shotgun Sequencing of the Sargasso Sea , 2004, Science.

[57]  T. Schmidt,et al.  Life History Implications of rRNA Gene Copy Number in Escherichia coli , 2004, Applied and Environmental Microbiology.

[58]  G. Steward,et al.  Fingerprinting Diazotroph Communities in the Chesapeake Bay by Using a DNA Macroarray , 2004, Applied and Environmental Microbiology.

[59]  Ian T. Paulsen,et al.  Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment , 2004, Nature.

[60]  Les Dethlefsen,et al.  Differences in codon bias cannot explain differences in translational power among microbes , 2005, BMC Bioinformatics.

[61]  S. Acinas,et al.  Fine-scale phylogenetic architecture of a complex bacterial community , 2004, Nature.

[62]  J. Montoya,et al.  High rates of N2 fixation by unicellular diazotrophs in the oligotrophic Pacific Ocean , 2004, Nature.

[63]  Å. Hagström,et al.  Oligotrophic Bacterioplankton with a Novel Single-Cell Life Strategy , 2004, Applied and Environmental Microbiology.

[64]  Xiaoming Zhao,et al.  Experimental and Theoretical Bases of Specific Affinity, a Cytoarchitecture-Based Formulation of Nutrient Collection Proposed To Supercede the Michaelis-Menten Paradigm of Microbial Kinetics , 2004, Applied and Environmental Microbiology.

[65]  M. Polz,et al.  Diversity and Dynamics of a North Atlantic Coastal Vibrio Community , 2004, Applied and Environmental Microbiology.

[66]  Farooq Azam,et al.  Algicidal Bacteria in the Sea and their Impact on Algal Blooms1 , 2004, The Journal of eukaryotic microbiology.

[67]  R. Malmstrom,et al.  Contribution of SAR11 Bacteria to Dissolved Dimethylsulfoniopropionate and Amino Acid Uptake in the North Atlantic Ocean , 2004, Applied and Environmental Microbiology.

[68]  E. Delong,et al.  Genomic perspectives in microbial oceanography , 2005, Nature.

[69]  J. Fuhrman,et al.  Impact of light on marine bacterioplankton community structure , 2005 .

[70]  Edward F. DeLong,et al.  Microbial community genomics in the ocean , 2005, Nature Reviews Microbiology.

[71]  Corinne Le Quéré,et al.  Role of Marine Biology in Glacial-Interglacial CO2 Cycles , 2005, Science.

[72]  C. Suttle Viruses in the sea , 2005, Nature.

[73]  Jang-Cheon Cho,et al.  Temporal and spatial response of bacterioplankton lineages to annual convective overturn at the Bermuda Atlantic Time‐series Study site , 2005 .