Report of the Double-Molybdate Phase Cs2Ba(MoO4)2 with a Palmierite Structure and Its Thermodynamic Characterization

The existence of a novel double-molybdate phase with a palmierite-type structure, Cs2Ba(MoO4)2, is revealed in this work, and its structural properties at room temperature have been characterized in detail using X-ray and neutron diffraction measurements. In addition, its thermal stability and thermal expansion are investigated in the temperature range 298–673 K using high-temperature X-ray diffraction, leading to the volumetric thermal expansion coefficient αV ≈ 43.0 × 10–6 K–1. The compound’s standard enthalpy of formation at 298.15 K has been obtained using solution calorimetry, which yielded ΔfHm°(Cs2Ba(MoO4)2, cr, 298.15 K) = −3066.6 ± 3.1 kJ· mol–1, and its standard entropy at 298.15 K has been derived from low-temperature (2.1–294.3 K) thermal-relaxation calorimetry as Sm°(Cs2Ba(MoO4)2, cr, 298.15 K) = 381.2 ± 11.8 J K–1 mol–1.

[1]  J. Rogez,et al.  Calorimetric Determination of the Formation Enthalpies of Cs Polymolybdates at 298.15 K and 0.1 MPa , 2020 .

[2]  C. Guéneau,et al.  Simulation of the chemical state of high burnup (U,Pu)O2 fuel in fast reactors based on thermodynamic calculations , 2020 .

[3]  Lingfeng He,et al.  Electron microscopy characterization of fast reactor MOX Joint Oxyde-Gaine (JOG) , 2020, Journal of Nuclear Materials.

[4]  P. F. Rosen,et al.  Standard methods for heat capacity measurements on a Quantum Design Physical Property Measurement System , 2020 .

[5]  Riley J. Parrish,et al.  TEM characterization of high burnup fast-reactor MOX fuel , 2019 .

[6]  R. Konings,et al.  Thermodynamic study of Cs3Na(MoO4)2: Determination of the standard enthalpy of formation and standard entropy at 298.15 K , 2018 .

[7]  Barry N. Taylor,et al.  Guidelines for Evaluating and Expressing the Uncertainty of Nist Measurement Results , 2017 .

[8]  K. Goubitz,et al.  Structural and thermodynamic study of dicesium molybdate Cs2Mo2O7: Implications for fast neutron reactors , 2017 .

[9]  Philippe M Martin,et al.  A New Look at the Structural and Magnetic Properties of Potassium Neptunate K2NpO4 Combining XRD, XANES Spectroscopy, and Low-Temperature Heat Capacity , 2017, Inorganic chemistry.

[10]  G. J. Sykora,et al.  Design and performance of a novel neutron powder diffractometer: PEARL at TU Delft , 2016 .

[11]  V. N. Yudin,et al.  Phase Relations in the Na2MoO4—Cs2MoO4 and Na2MoO4—Cs2MoO4 —ZnMoO4 Systems, Crystal Structures of Cs3Na(MoO4)2 and Cs3NaZn2(MoO4)4. , 2016 .

[12]  Eric Colineau,et al.  Low temperature heat capacity of Na4UO5 and Na4NpO5 , 2015 .

[13]  Zheshuai Lin,et al.  The Double Molybdate Rb2Ba(MoO4)2: Synthesis, Crystal Structure, Optical, Thermal, Vibrational Properties, and Electronic Structure , 2015 .

[14]  M. Lei,et al.  Controllable route to barium molybdate crystal and their photoluminescence , 2015 .

[15]  H. Gamsjäger,et al.  Thermodynamic properties of molybdate ion: reaction cycles and experiments , 2015 .

[16]  V. L. Kozhevnikov,et al.  Oxygen ion and electron conductivity in fluorite-like molybdates Nd5Mo3O16 and Pr5Mo3O16 , 2014 .

[17]  Phạm Thị,et al.  Caractérisation et modélisation du comportement thermodynamique du combustible RNR-Na sous irradiation , 2014 .

[18]  Marc Barrachin,et al.  Fuel and fission product behaviour in early phases of a severe accident. Part I: Experimental results of the PHEBUS FPT2 test , 2014 .

[19]  G. Wallez,et al.  High-temperature behavior of dicesium molybdate Cs2MoO4: Implications for fast neutron reactors , 2014 .

[20]  D. Sheptyakov,et al.  Influence of disorder on the structural phase transition and magnetic interactions in Ba 3-x SrxCr2O8 , 2014, 1404.7375.

[21]  H. Loye,et al.  Synthesis, Structure, and Optical Properties of a Series of Quaternary Oxides, K2Ba(MO4)2 (M = Cr, Mo, W). , 2014 .

[22]  B. Woodfield,et al.  Low temperature heat capacity study of FePO4 and Fe3(P2O7)2 , 2013 .

[23]  B. Woodfield,et al.  Low temperature heat capacity study of Fe3PO7 and Fe4(P2O7)3 , 2013 .

[24]  B. Woodfield,et al.  Low temperature heat capacity Study of Fe(PO3)3 and Fe2P2O7 , 2013 .

[25]  D. Jain,et al.  Characterization and thermo physical property investigations on Ba1−xSrxMoO4 (x = 0, 0.18, 0.38, 0.60, 0.81, 1) solid-solutions , 2012 .

[26]  K. Kurosaki,et al.  Chemical States of Fission Products and Actinides in Irradiated Oxide Fuels Analyzed by Thermodynamic Calculation and Post-Irradiation Examination (Selected Papers of the Joint International Conference of Supercomputing in Nuclear Applications and Monte Carlo : SNA + MC 2010) , 2011 .

[27]  L. Bih,et al.  Crystal Chemistry, Rietveld Refinements and Raman Spectroscopy Studies of the New Solid Solution Series: Ba3-xSrx(VO4)2 (0 ≤ x ≤ 3). , 2010 .

[28]  L. Bih,et al.  Crystal chemistry, Rietveld refinements and Raman spectroscopy studies of the new solid solution series: Ba3−xSrx(VO4)2 (0 ≤ x ≤ 3) , 2010 .

[29]  G. Brillant,et al.  Interpretation and modelling of fission product Ba and Mo releases from fuel , 2010 .

[30]  N. Sorokin Ionic conductivity of double sodium-scandium and cesium-zirconium molybdates , 2009 .

[31]  C. Zaldo,et al.  Double Tungstate and Molybdate Crystals for Laser and Nonlinear Optical Applications , 2009 .

[32]  Guangshe Li,et al.  Heat capacities and thermodynamic functions of TiO2 anatase and rutile: Analysis of phase stability , 2009 .

[33]  K. Kamenev,et al.  Miniature diamond anvil cell for 3He insert into quantum design physical property measurement system , 2007 .

[34]  Jong-Won Yoon,et al.  Photoluminescence in nanocrystalline MMoO4 (M = Ca, Ba) synthesized by a polymerized complex method , 2006 .

[35]  S. Oishi,et al.  Evaluation of stoichiometric rare-earth molybdate and tungstate compounds as laser materials , 2005 .

[36]  P. Boulet,et al.  Low-temperature heat capacity measurements on encapsulated transuranium samples , 2005 .

[37]  V. Isupov,et al.  Binary Molybdates and Tungstates of Monoand Trivalent Elements as Possible Ferroelastics and Ferroelectrics , 2005 .

[38]  K. Maeda,et al.  Change of fuel-to-cladding gap width with the burn-up in FBR MOX fuel irradiated to high burn-up , 2004 .

[39]  J. L. Smith,et al.  Critical examination of heat capacity measurements made on a Quantum Design physical property measurement system , 2003 .

[40]  R. Goldberg,et al.  Standards in isothermal microcalorimetry (IUPAC Technical Report) , 2001 .

[41]  J. Voigt,et al.  X-ray powder diffraction study of synthetic Palmierite, K2Pb(SO4)2 , 2001, Powder Diffraction.

[42]  A. Navrotsky,et al.  Molar heat capacity and thermodynamic functions forCaTiO3 , 1999 .

[43]  M. Weller,et al.  Ba3Mn2O8 Determined from Neutron Powder Diffraction. , 1999 .

[44]  A. Navrotsky,et al.  Molar heat capacity and thermodynamic functions of zirconolite CaZrTi2O7 , 1999 .

[45]  H. Ohashi,et al.  Thermal expansion and thermal conductivity of cesium molybdate , 1997 .

[46]  T. Mizuno,et al.  Thermal conductivity of cesium molybdate Cs2MoO4 , 1996 .

[47]  R. Konings,et al.  The release of fission products from degraded UO2 fuel: Thermochemical aspects , 1993 .

[48]  D. Sood,et al.  The standard molar enthalpies of formation at the temperature T = 298.15 K of barium molybdate BaMoO4(cr) and strontium molybdate SrMoO4(cr) , 1993 .

[49]  M. Tourasse,et al.  Fission product behaviour in phenix fuel pins at high burnup , 1992 .

[50]  V. Venugopal,et al.  Standard molar enthalpies of formation of sodium molybdates (Na2MonO3n+1 with n = 1, 2, 3 or 4) at 298.15 K by solution calorimetry , 1992 .

[51]  R. Konings,et al.  Chemical interactions in water-cooled nuclear fuel: A thermochemical approach , 1988 .

[52]  Z. Yoshida,et al.  Metallic phases precipitated in UO2 fuel , 1988 .

[53]  H. Kleykamp,et al.  Phase equilibria in the pseudoquaternary BaO-UO2-ZrO2-MoO2 system , 1987 .

[54]  S. Imoto Chemical state of fission products in irradiated UO2 , 1986 .

[55]  H. Kleykamp,et al.  The chemical state of the fission products in oxide fuels , 1985 .

[56]  P. O'hare Thermochemistry of molybdates III. Standard enthalpy of formation of barium molybdate, and the standard entropy and standard Gibbs energy of formation of the aqueous molybdate ion , 1974 .

[57]  D. W. Osborne,et al.  Cesium molybdate, Cs2MoO4: Heat capacity and thermodynamic properties from 5 to 350 K☆ , 1974 .

[58]  A. Sleight,et al.  A new ferroelastic transition in some A2(MO4)3 molybdates and tungstates , 1973 .

[59]  E. Gopal Specific Heats at Low Temperatures , 1966 .

[60]  H. Schwarz Doppelverbindungen vom Typ Me 2I(MeII(XVIO4)2 mit der Struktur von Sr3(PO4)2. III. Chromate , 1966 .

[61]  L. Hepler,et al.  Heats of Formation of Sodium Molybdate, Molybdic Acid and Aqueous Molybdate Ion , 1956 .

[62]  M. Morishita,et al.  Third Law Entropy of Barium Molybdate , 2016 .

[63]  R. Guillaumont,et al.  Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium , 2003 .

[64]  A. Navrotsky,et al.  Phonon, Spin-Wave, and Defect Contributions to the Low-Temperature Specific Heat of α-FeOOH , 2003 .

[65]  D. R.,et al.  Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides , 2001 .

[66]  E. Cordfunke,et al.  Thermophysical and thermochemical properties of BaO and SrO from 5 to 1000 K , 1994 .

[67]  Juan Rodriguez-Carvaj,et al.  Recent advances in magnetic structure determination neutron powder diffraction , 1993 .

[68]  P. G. Hill,et al.  A Fundamental Equation of State for Heavy Water , 1982 .

[69]  V. B. Parker,et al.  Thermal properties of aqueous uni-univalent electrolytes , 1965 .