Continuous data assimilation algorithm for simplified Bardina model

We present a continuous data assimilation algorithm for three-dimensional viscous simplified Bardina turbulence model, based on the fact that dissipative dynamical systems possess finite degrees of freedom. We construct an approximating solution of simplified Barbina model through an interpolant operator which is obtained using observational data of the system. This interpolant is inserted to theoric model coupled to a relaxation parameter, and our main result provides conditions on the finite-dimensional spatial resolution of collected measurements sufficient to ensure that the approximating solution converges to the theoric solution of the model. Global well-posedness of approximating solutions and related results with degrees of freedom are also presented.

[1]  E. Titi,et al.  A Data Assimilation Algorithm: the Paradigm of the 3D Leray-α Model of Turbulence , 2019, Partial Differential Equations Arising from Physics and Geometry.

[2]  Edriss S. Titi,et al.  Data Assimilation algorithm for 3D B\'enard convection in porous media employing only temperature measurements , 2015, 1506.08678.

[3]  Edriss S. Titi,et al.  Finite determining parameters feedback control for distributed nonlinear dissipative systems - a computational study , 2015, 1506.03709.

[4]  Edriss S. Titi,et al.  A Computational Study of a Data Assimilation Algorithm for the Two-dimensional Navier-Stokes Equations , 2015, 1505.01234.

[5]  Edriss S. Titi,et al.  Abridged Continuous Data Assimilation for the 2D Navier–Stokes Equations Utilizing Measurements of Only One Component of the Velocity Field , 2015, 1504.05978.

[6]  Edriss S. Titi,et al.  Continuous data assimilation for the three-dimensional Brinkman–Forchheimer-extended Darcy model , 2015, 1502.00964.

[7]  Edriss S. Titi,et al.  Continuous data assimilation for the 2D Bénard convection through velocity measurements alone , 2014, 1410.1767.

[8]  Edriss S. Titi,et al.  Continuous Data Assimilation Using General Interpolant Observables , 2013, J. Nonlinear Sci..

[9]  P. Korn On degrees of freedom of certain conservative turbulence models for the Navier–Stokes equations , 2011 .

[10]  Viorel Barbu,et al.  Stabilization of Navier-Stokes Flows , 2010 .

[11]  Kaitai Li,et al.  Existence of solutions for the MHD-Leray-alpha equations and their relations to the MHD equations , 2007 .

[12]  E. Titi,et al.  Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models , 2006, physics/0608096.

[13]  E. Titi,et al.  Analytical study of certain magnetohydrodynamic-α models , 2006, math/0606603.

[14]  William Layton,et al.  On a well-posed turbulence model , 2005 .

[15]  Darryl D. Holm,et al.  On a Leray–α model of turbulence , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[16]  Darryl D. Holm,et al.  On the Clark–α model of turbulence: global regularity and long-time dynamics , 2004, nlin/0412007.

[17]  Darryl D. Holm,et al.  The Three Dimensional Viscous Camassa–Holm Equations, and Their Relation to the Navier–Stokes Equations and Turbulence Theory , 2001, nlin/0103039.

[18]  Darryl D. Holm,et al.  Navier-Stokes-alpha model: LES equations with nonlinear dispersion , 2001, nlin/0103036.

[19]  Darryl D. Holm,et al.  The Camassa-Holm equations and turbulence , 1999 .

[20]  Darryl D. Holm,et al.  A connection between the Camassa–Holm equations and turbulent flows in channels and pipes , 1999, chao-dyn/9903033.

[21]  Darryl D. Holm,et al.  Direct numerical simulations of the Navier–Stokes alpha model , 1999, Physica D: Nonlinear Phenomena.

[22]  J. Bernard Solutions globales variationnelles et classiques des fluides de grade deux , 1998 .

[23]  Jerrold E. Marsden,et al.  EULER-POINCARE MODELS OF IDEAL FLUIDS WITH NONLINEAR DISPERSION , 1998 .

[24]  Doina Cioranescu,et al.  Weak and classical solutions of a family of second grade fluids , 1997 .

[25]  Donald A. Jones,et al.  Determining finite volume elements for the 2D Navier-Stokes equations , 1992 .

[26]  R. Daley Atmospheric Data Analysis , 1991 .

[27]  Edriss S. Titi,et al.  Determining nodes, finite difference schemes and inertial manifolds , 1991 .

[28]  R. Temam,et al.  Determination of the solutions of the Navier-Stokes equations by a set of nodal values , 1984 .

[29]  R. Temam,et al.  Asymptotic analysis of the navier-stokes equations , 1983 .

[30]  J. Ferziger,et al.  Improved subgrid-scale models for large-eddy simulation , 1980 .

[31]  H. Davies,et al.  COMMENTS ON THE PAPER 'UPDATING PREDICTION MODELS BY DYNAMICAL RELAXATIONL: AN EXAMINATION OF TH TECHNIQUE , 1978 .

[32]  I. Simmonds,et al.  Comments on the paper ‘updating prediction models by dynamical relaxation: An examination of the technique’ by H. C. Davies and R. E. Turner (Q.J., 1977, 103, 225–245) , 1978 .

[33]  H. Davies,et al.  Updating prediction models by dynamical relaxation - An examination of the technique. [for numerical weather forecasting] , 1977 .

[34]  V. M. Toi,et al.  UPPER BOUNDS ON THE NUMBER OF DETERMINING MODES, NODES, AND VOLUME ELEMENTS FOR A 3D MAGENETOHYDRODYNAMIC-α MODEL , 2020 .

[35]  Edriss S. Titi,et al.  Continuous data assimilation for the three-dimensional Navier-Stokes-α model , 2016, Asymptot. Anal..

[36]  Hantaek Bae Navier-Stokes equations , 1992 .

[37]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[38]  C. Foiaș,et al.  Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension $2$ , 1967 .

[39]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.